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Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set

of observations as accurately as possible, and has numerous applications such as product recommendation.

Unfortunately, existing methods for solving low-rank matrix completion are heuristics that, while highly

scalable and often identifying high-quality solutions, do not possess any optimality guarantees.

We reexamine matrix completion with an optimality-oriented eye, by reformulating low-rank problems as

convex problems over the non-convex set of projection matrices and implementing a disjunctive branch-and-

bound scheme that solves them to certifiable optimality. Further, we derive a novel and often tight class of

convex relaxations by decomposing a low-rank matrix as a sum of rank-one matrices and incentivizing, via

a Shor relaxation, that each two-by-two minor in each rank-one matrix has determinant zero. In numerical

experiments, our new convex relaxations decrease the optimality gap by two orders of magnitude compared

to existing attempts. Moreover, we showcase the performance of our disjunctive branch-and-bound scheme

and demonstrate that it solves matrix completion problems over 150×150 matrices to certifiable optimality

in hours, constituting an order of magnitude improvement on the state-of-the-art for certifiably optimal

methods.

Key words : Low-rank matrix completion; branch-and-bound; disjunctive cuts; matrix perspective

relaxation; rank-one convexification; semidefinite programming.

1. Introduction

The presence of missing or noisy entries is a significant challenge faced by data-driven approaches in

many real-world contexts. Indeed, incomplete data problems arise in settings as diverse as product
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recommendation (Bell and Koren 2007), sensor location (Biswas and Ye 2004), and statistical

inference (Little and Rubin 2019). For instance, in product recommendation, observed entries

correspond to past product-customer ‘interactions’ (e.g., purchases, views) and are a small fraction

of all possible pairs, since most customers only interact with a small proportion of all products. The

most common approach for managing missing data when the number of observed entries is small

compared to the size of the dataset is to make structural assumptions about the data generation

process and solve a data imputation problem to calibrate the model. Perhaps the most popular

imputation assumption is that the underlying data structure can be modeled by a low-rank matrix.

Structural low-rank assumptions are relevant because most datasets are approximately low-rank,

and we can recover a low-rank matrix after observing a small subset of its entries. Indeed, Udell

and Townsend (2019) prove that for a generic matrix A generated by a latent variable model which

produces full-rank matrices, the optimal value of

min
X∈Rn×m

Rank(X) s.t. ∥X −A∥∞ ≤ ϵ (1)

grows as O(log(m+ n)/ϵ2). Moreover, a rank-r n×m matrix has (n+m)r degrees of freedom in

a singular value decomposition (SVD). Therefore, one can recover a rank-r matrix after observing

a small subset of its entries, of order mr logm (Candès and Recht 2009).

Formally, the low-rank matrix completion problem with or without noise can be stated as follows:

Given observations Ai,j : (i, j) ∈ I ⊆ [n]× [m] from a matrix A ∈Rn×m, we seek a low-rank

matrix X ∈Rn×m which approximates the observed entries of A. In the noiseless case (later

referred to as the basis pursuit case), this problem can be formulated as:

min
X∈Rn×m

∥X∥2F s.t. Xi,j =Ai,j ∀ (i, j)∈ I, Rank(X)≤ k, (2)

while in the noisy case (later referred to as the matrix completion case) we have:

min
X∈Rn×m

1

2γ
∥X∥2F +

1

2

∑
(i,j)∈I

(Xi,j −Ai,j)
2

s.t. Rank (X)≤ k, (3)

where k, γ are hyperparameters which respectively bound the rank of X and regularize

X to control its sensitivity to noise, and are to be selected in practice by minimizing a

cross-validation error metric such as leave-one-out (c.f. Ding and Chen 2020).

From a generative model perspective, Problems (2)-(3) are consistent with a low-rank model

(see, e.g., Candès and Recht 2009) where the matrix of observations A can be decomposed as

Ai,j =Atrue
i,j +Zi,j, ∀ (i, j)∈ I, (4)
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for an underlying low-rank matrix Atrue and a noise matrix Z. We have Z = 0 in the noiseless

case, which arises in Euclidean Distance Embedding problems (see, e.g., So and Ye 2007). We refer

to Udell et al. (2016) for a review of stochastic generative models addressed via rank constraints.

Problems (2)-(3) have received a great deal of attention since the Netflix Competition (c.f.

Bell and Koren 2007) and heuristics methods now find high-quality solutions for very large-scale

instances. Unfortunately, to our knowledge, no method currently solves Problems (2)-(3) to prov-

able optimality for m,n beyond 50 and r > 1 (Naldi 2016, Bertsimas et al. 2022). Improving the

scalability of exact schemes would be both statistically and practically meaningful. Indeed, in

many statistical estimation settings, there exists an information-theoretic gap between the mini-

mum number of observations required to impute a matrix via certifiably optimal methods and the

number required via any polynomial time method, a phenomenon referred to as the overlap gap

conjecture (Gamarnik 2021). Moreover, from a more practical perspective, Bertsimas et al. (2022)

have shown that, on average, solving (2) via a provably optimal method gives a low-rank matrix

X with a smaller out-of-sample mean squared error (MSE) than the MSE obtained via a heuristic.

In this paper, we revisit (2)-(3) and design a custom branch-and-bound method that solves both

problems to provable optimality at a scale of n= 100s via a combination of the matrix perspective

relaxation (Bertsimas et al. 2023), eigenvector disjunctive cuts (Saxena et al. 2010) we use to

define branching regions, and new convex relaxations and presolving techniques. We also show

numerically that this approach obtains more accurate solutions than the state-of-the-art method

of Burer and Monteiro (2003), in terms of out-of-sample performance.

1.1. Literature Review

We propose a branch-and-bound algorithm that solves Problems (2)-(3) to provable optimality at

scale. To develop such an algorithm, we require three ingredients. First, a strategy for recursively

partitioning the solution space. Second, a technique for generating high-quality convex relaxations

which provide strong lower bounds on each partition. Third, a local optimization strategy for

quickly obtaining locally optimal solutions in a given partition. To put our contribution into con-

text, we now review all three aspects of the relevant literature and refer to Udell et al. (2016),

Nguyen et al. (2019), Bertsimas et al. (2022) for general overviews of low-rank optimization:

Exact Methods for Non-Convex Quadratically Constrained Problems A variety of spatial branch-

and-bound schemes have been proposed for non-convex quadratically constrained quadratic opti-

mization (QCQO) problems such as (2)-(3) since the work of McCormick (1976), who observed that

quadratic products xy can be bounded within a rectangle and used this observation to design a spa-

tial branch-and-bound scheme which recursively partitions the feasible region into rectangles (see

also Bao et al. 2009, Misener and Floudas 2012, Speakman and Lee 2017, for related improvements).
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Eventually, this progress led to the development of mature global solvers like BARON (Sahinidis

1996), Couenne (Belotti et al. 2009), ANTIGONE (Misener and Floudas 2014), and Gurobi (Bixby

2012). Unfortunately, these solvers currently cannot obtain high-quality solutions to QCQOs with

more than fifty variables (see Kronqvist et al. 2019, for a benchmark).

Generalizing techniques from mixed-integer optimization, Saxena et al. (2010, 2011) proposed a

disjunctive cut scheme that begins with a semidefinite relaxation and iteratively imposes disjunctive

cuts, and solved some QCQO problems with up to 50 variables. Their approach was subsequently

refined by Anstreicher (2022), who integrated their disjunctive cuts within a branch-and-bound

scheme (where the disjunctions are used as branching regions), and solved some numerically chal-

lenging two-trust-region problems. In a parallel direction, Kocuk et al. (2018) proposed a branch-

and-cut algorithm for rank-one optimal power flow problems and strengthened their relaxations by

(a) deriving valid inequalities from the 2× 2 minors of a rank-one matrix and (b) taking convex

envelopes of appropriate substructures of their problem. In a different context, Das Gupta et al.

(2023) reformulated the problem of designing an optimal first-order method as a QCQO problem

and obtained orders of magnitude improvement over off-the-shelf solvers by exploiting the problem

structure to design strong convex relaxations.

More recently, Bertsimas et al. (2022) proposed introducing orthogonal projection matrices to

model the rank of a matrix and demonstrated that this gives rise to strong relaxations which

allow off-the-shelf branch-and-cut solvers to solve matrix completion problems over up to 50× 50

matrices to provable optimality when r = 1. This paper falls within this tradition and provides

evidence that although QCQO is intractable in the worst-case, many instances of (2)-(3) which

arise in practice can nonetheless be tractably solved to (near) optimality.

Strong Convex Relaxations for Low-Rank Matrix Completion A number of works have pro-

posed solving Problems (2)-(3) via their convex relaxations, originating with Shapiro (1982), Fazel

(2002), who proposed replacing a rank minimization objective minX∈Sn
+

Rank(X) with a trace

term minX∈Sn
+

tr(X) for positive semidefinite factor analysis and matrix completion problems

(see also Candès and Recht 2009, Candès and Plan 2010, Recht et al. 2010, for extensions to the

asymmetric case). This approach is justified under the (strong) assumption that the eigenvalues of

X are bounded by a small constant relative to the magnitude of the problem data, since

Conv
{
X ∈ Sn

+ : Rank(X)≤ k, X ⪯MI
}
=
{
X ∈ Sn

+ : tr(X)≤ kM, X ⪯MI
}
, (5)

and thus replacing the rank of a matrix with its trace is related to taking the convex envelope of a

low-rank objective. Indeed, the eigenvalue assumption is equivalent to assuming that a restricted

isometry property (RIP; see, e.g., Bhojanapalli et al. 2018) holds. When RIP holds, it is well-

documented that trace minimization performs well in practice. Unfortunately, verifying whether
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the RIP holds is computationally challenging (Bandeira et al. 2013), and when it does not hold,

it is unclear how well the trace minimization approach performs. Indeed, Fazel (2002)’s trace

minimization approach is ultimately a generalization of the big-M approach from mixed-integer

optimization, which can generate weak convex relaxations (Bienstock 2010).

Bertsimas et al. (2023) recently proposed a general procedure for obtaining strong bounds to

low-rank problems (see also Wang and Kılınç-Karzan 2022, Li and Xie 2022, 2023, for related

attempts). Namely, they combined the orthogonal projection matrix reformulation of Bertsimas

et al. (2022) with the matrix analog of perspective functions (c.f. Ebadian et al. 2011) and obtained

a new class of convex relaxations for low-rank problems.

Local Optimization Strategies for Matrix Completion and Recovery: Owing to both Problem (2)-

(3)’s significant modeling power and the substantial difficulty inherent in solving (2)-(3) to provable

optimality, several authors have proposed local optimization algorithms that tend to provide high-

quality locally optimal solutions in practice. Perhaps the most significant work in this tradition

is Burer and Monteiro (2003, 2005), who proposed implicitly modeling a rank-k constraint via

the nonlinear reformulation X =UV ⊤, where U ∈ Rn×k,V ∈ Rm×k, and solving for U ,V via an

augmented Lagrangian method; recent refinements (Jain et al. 2013, Zheng and Lafferty 2015) use

more scalable methods like alternating minimization or gradient descent to converge towards a

locally optimal solution.

Interestingly, several authors have shown in different contexts (Boumal et al. 2016, Bhojanapalli

et al. 2016, Cifuentes 2019) that if one makes stronger assumptions on the amount of data available

to complete X, then the Burer-Monteiro approach generically obtains a second-order critical point

which is globally optimal, although this is not guaranteed to occur (see Bhojanapalli et al. 2018,

Zhang et al. 2018, for counterexamples). This suggests that partitioning the feasible region via

branch-and-bound and running a Burer-Monteiro approach on subregions with strong lower bounds

is potentially useful for identifying high-quality solutions to matrix completion problems.

We remark that all heuristics reviewed here can be applied to Problem (3) but, in general, rely

upon a feasible initialization point and thus may not even provide a feasible solution to Problem

(2). This is perhaps unsurprising, since even finding a feasible solution to (2) is ∃R-complete, i.e.,

as hard as solving a system of polynomial equalities and inequalities (Bertsimas et al. 2022).

1.2. Contributions and Structure

We propose a spatial branch-and-bound scheme which solves medium-sized instances of Problems

(2) and (3) to certifiable (near) optimality. Our spatial branch-and-bound solver is open-source and

does not rely on any commercial spatial branch-and-bound technology. We hope this code helps

other researchers further improve the scalability of certifiably optimal low-rank methods.
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The key contributions of the paper are threefold. First, we derive eigenvector disjunctive cuts

that can be used to recursively partition the feasible region and strengthen the matrix per-

spective relaxations of Problems (2)-(3). Second, by combining an old characterization of rank

via determinant minors, which is new to the matrix completion literature, with the well-known

Shor semidefinite relaxation, we derive tighter convex relaxations for matrix completion prob-

lems, from which we derive presolving strategies and valid inequalities. Third, we design a spa-

tial branch-and-bound algorithm that partitions the feasible region using disjunctive cuts, com-

putes valid lower bounds via the strengthened matrix perspective relaxation, and obtains high-

quality feasible solutions by running an alternating minimization heuristic at the root and child

nodes. We open-source our implementation as the OptimalMatrixCompletion.jl package at

https://github.com/sean-lo/OptimalMatrixCompletion.jl.

We remark that our approach improves the scalability of certifiably optimal methods for Prob-

lems (2)–(3) compared to the state-of-the-art. In particular, we solve instances of Problems (2)-(3)

with 100s of variables to provable optimality in minutes or hours, while our prior work Bertsimas

et al. (2022) solves problems where n= 20 and r = 1 to provable optimality in hours, but return

optimality gaps larger than 100% after hours when n≥ 60 or r > 1. This is because our approach

involves a custom branching scheme that supports imposing semidefinite constraints at the root

node and refining relaxations via eigenvector disjunctions, while our previous attempt Bertsimas

et al. (2022) used a commercial solver which does not support semidefinite relaxations at the root

node, and refines relaxations using weaker McCormick disjunctions.

We also improve in terms of obtaining provably near-optimal solutions to Problems (2)–(3).

To our knowledge, the state-of-the-art is currently (a) using the matrix perspective relaxation

developed in our prior work Bertsimas et al. (2023) as a lower bound, and (b) invoking a strong

heuristic such as the method of Burer and Monteiro (2003) as an upper bound. On the other hand,

our branch-and-bound scheme bounds at the root node by design, and iteratively improves them as

the search tree expands. In numerical experiments (Section 5), we observe that stronger upper and

lower bounds translate to an improved out-of-sample MSE compared to the method of Burer and

Monteiro (2003) alone. Namely, we observe an out-of-sample MSE improvement from our approach

with a runtime budget of one hour of up to 40% for n≤ 50 and a ground truth rank of two, and

1–10% for n∈ {100,125,150} and a ground truth rank up to five.

However, we should point out that there exist (much) more scalable heuristics than our method

that do not possess optimality guarantees. For instance, the randomized sketching conditional

gradient method of Yurtsever et al. (2017) scales to problems where n = 108; bridging the gap

between the scalability of certifiably optimal methods and heuristics remains an ongoing challenge.

The rest of the paper is structured as follows:

https://github.com/sean-lo/OptimalMatrixCompletion.jl
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In Section 2, we derive Problems (2)-(3)’s matrix perspective relaxations and propose disjunc-

tive cuts for improving the relaxation. With our disjunctive inequalities, we separate an optimal

solution to the relaxation from the feasible region using a single eigenvalue separation oracle. On

the contrary, we prove in Section 2.5 that one McCormick disjunction alone—the most widely used

disjunctions for non-convex QCQO—never separates a relaxed solution from the feasible region.

In Section 3, we leverage a characterization of the rank of a matrix via its determinant minors to

develop a novel convex relaxation for strongly convex low-rank problems. Although not necessarily

computationally tractable for problem sizes we are interested in, this new relaxation gives rise

to two efficient techniques for strengthening our original relaxation. First, a presolving technique

that partially completes the input matrix A and generates valid additional equality constraints for

Problem (2). Second, a technique for generating valid inequalities for Problems (2)-(3), which we

can impose in a column-and-constraint-generation fashion for computational tractability.

In Section 4, we combine the analysis of Sections 2 and 3 to design a spatial branch-and-bound

algorithms that converges to a certifiably optimal solution of Problem (2)-(3). We also discuss

different aspects of our algorithmic implementation, including node selection, branching rule, and

an alternating minimization strategy to obtain high-quality feasible solutions.

In Section 5, we investigate the performance of our spatial branch-and-bound scheme and find

that it solves instances of Problems (2)-(3) to certifiable (near) optimality when n= 250 in minutes

or hours. We also verify that running our branch-and-bound method with a time limit of minutes

or hours generates matrices with an MSE up to 50% lower than state-of-the-art heuristics.

1.3. Notation

We let non-boldface characters such as b denote scalars, lowercase bold-faced characters such as x

denote vectors, uppercase bold-faced characters such as A denote matrices, and calligraphic upper-

case characters such as Z denote sets. We let [n] denote the running set of indices {1, . . . , n}. We

let e denote the vector of ones, 0 denote the vector of all zeros, and I denote the identity matrix.

We let Sn denote the cone of n×n symmetric matrices, and Sn
+ denote the cone of n×n positive

semidefinite matrices. We let Yn := {P ∈ Sn :P 2 =P } denote the set of n×n orthogonal projec-

tion matrices and Yk
n := {P ∈ Sn :P 2 =P , tr (P )≤ k } denote the projection matrices with rank

at most k. The convex hulls of these sets are well-studied in the optimization literature. In particu-

lar, we have Conv (Yn) = {P ∈ Sn : 0⪯P ⪯ I } and Conv (Yk
n) = {P ∈ Sn : 0⪯P ⪯ I, tr (P )≤ k }

(Overton and Womersley 1992, Theorem 3).
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2. Mixed-Projection Formulations, Their Relaxations, and Valid Disjunctions

In this section, we derive Problem (2)-(3)’s semidefinite relaxations in Section 2.1, and refine these

relaxations by using eigenvector disjunctive cuts inspired by Saxena et al. (2010) in Sections 2.2-

2.4. We show that our proposed approach allows us to separate an optimal solution to the original

semidefinite relaxation with a single disjunctive cut. In comparison, we justify the relative poor

performance of traditional disjunctions based on McCormick inequalities by showing in Section 2.5

that some McCormick disjunctions over 2k regions do not improve the semidefinite relaxation.

2.1. Mixed-Projection Formulations and Their Matrix Perspective Relaxations

First, motivated by our prior work (Bertsimas et al. 2022, 2023), we introduce an orthogonal

projection matrix Y ∈Yn to model the rank of X via the bilinear constraint X =Y X. Hence, we

can replace the rank constraint on X by a linear constraint on Y : tr(Y )≤ k.

By Bertsimas et al. (2023, Theorem 1), we enforce the bilinear constraint implicitly (and in a

convex manner) via the domain of a matrix perspective function and can rewrite (2)-(3) as:

min
Y ∈Yk

n

min
X∈Rn×m,Θ∈Sm

1

2γ
tr (Θ)+ g(X) s.t.

(
Y X
X⊤ Θ

)
⪰ 0, (6)

where g(X) is a convex function that satisfies the following assumption:

Assumption 1. The function g(X) is one of the following:

• In the noiseless case (2),

g(X) =

{
0 if Xi,j =Ai,j ∀ (i, j)∈ I,
+∞ otherwise,

(7)

and we set γ = 1 without loss of generality since the optimal solutions are identical for any γ > 0.

• In the noisy case (3),

g(X) =
1

2

∑
(i,j)∈I

(Xi,j −Ai,j)
2
, (8)

and γ > 0 is a hyperparameter.

By introducing an orthogonal projection matrix Y and invoking Assumption 1, the non-convexity

in the rank constraint in Problem (2)-(3) has been isolated within the feasible set of Problem (6)

and the fact that Y is a projection matrix—i.e., in the non-convex quadratic constraint Y 2 =Y .

Therefore, we now explore strategies for optimizing over this constraint, by first relaxing {Y ∈
Sn : Y 2 = Y } to its convex hull {Y ∈ Sn

+ : Y ⪯ I}, and subsequently refining this relaxation via

disjunctive cuts. We immediately have the following semidefinite relaxation, which is often very

tight in practice (see also Bertsimas et al. 2022, Lemma 4):

min
Y ∈Conv(Yk

n)
min

X∈Rn×m, Θ∈Sm

1

2γ
tr(Θ)+ g(X) s.t.

(
Y X
X⊤ Θ

)
⪰ 0. (9)
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When we solve (9), one of two situations occur. Either we obtain a solution Ŷ with binary eigenval-

ues and the relaxation is tight, or Ŷ has strictly fractional eigenvalues and, since Yk
n is a bounded

feasible region, we can improve the relaxation by separating Ŷ from the feasible region using

disjunctive programming techniques.

2.2. Improving Matrix Perspective Relaxations via Eigenvector Disjunctions

To obtain a computationally tractable set of branching directions, we work on an equivalent lifted

version of the semidefinite relaxation (9). Recall that in an optimal solution to Problem (9) where Y

is an orthogonal projection matrix with binary eigenvalues, we can decompose Y as Y =UU⊤ for

an orthogonal matrix U ∈Rn×k with U⊤U = Ik. Therefore, introducing U and relaxing Y =UU⊤

to Y ⪰UU⊤ yields the following equivalent relaxation to (9):

min
Y ∈Conv(Yk

n)

U∈Rn×k

min
X∈Rn×m

Θ∈Sm

1

2γ
tr (Θ)+ g(X) s.t.

(
Y X
X⊤ Θ

)
⪰ 0, Y ⪰UU⊤. (10)

This lifted formulation involves a semidefinite constraint Y ⪰UU⊤, which, in its rank-one version,

is prevalent in the mixed-integer quadratic optimization literature.

A challenging predicament in separating an optimal solution to Problem (9) from (6)’s feasi-

ble region is that branching on the eigenvalues of Y directly—which would be the most natural

extension of the branching scheme in binary optimization—is not, to our knowledge, possible. To

avoid this predicament, we adapt the lifted approach proposed by Saxena et al. (2010) for general

mixed-integer QCQO (see also Dong and Luo 2018) to our lifted formulation (10).

If Rank(X̂) ≤ k in an optimal solution (Ŷ , Û ,X̂, Θ̂) to (10) then X̂ also solves the original

rank-constrained problem, (2) or (3). Otherwise, the non-convex constraint Ŷ = ÛÛ⊤ does not

hold, which implies that Ŷ ̸⪯ ÛÛ⊤. Equivalently, in this case, there exists a vector x∈Rn (e.g. a

negative eigenvector of ÛÛ⊤− Ŷ ) such that x⊤(ÛÛ⊤− Ŷ )x< 0, ∥x∥2 = 1. Therefore, we would

like to impose the (non-convex) inequality

x⊤Y x≤x⊤UU⊤x= ∥U⊤x∥22 (11)

via a disjunction. We describe this construction for the rank-one and k > 1 cases respectively, in

the following two sections. We note that our initial development is similar to Saxena et al. (2010),

as well as more recent developments by Fampa and Lee (2021), Rahimian and Mehrotra (2020),

Anstreicher (2022), although our extension to projection matrices and where the rank potentially

exceeds one is, to our knowledge, new.
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2.3. Eigenvector Disjunctions for the Rank-one Case

In the rank-one case, the matrix U is a single column vector and U⊤x is a scalar. Recalling that

∥U⊤x∥22 ≤ ∥x∥22 = 1, imposing such a disjunction is equivalent to bounding the function u 7→ u2

from above over the interval [−1,1]. For any u0 ∈ (−1,1), we have the following piecewise upper

approximation with breakpoints {−1, u0,1}:

u2 ≤

{
1−u
1−u0

·u2
0 +

u−u0
1−u0

if u∈ [u0,1]
u+1
u0+1

·u2
0 +

u0−u
u0+1

if u∈ [−1, u0]
=

{
u+uu0−u0 if u∈ [u0,1],

−u+uu0 +u0 if u∈ [−1, u0].
(12)

Using u0 = Û⊤x yields the following upper bound:

∥U⊤x∥22 ≤

{
x⊤ÛU⊤x+(Û −U)⊤x if U⊤x∈ [−1, Û⊤x],

x⊤ÛU⊤x+(U − Û)⊤x if U⊤x∈ [Û⊤x,1].

Accordingly, for U such that U⊤x ∈ [−1, Û⊤x] (or, alternatively, U⊤x ∈ [Û⊤x,1]), we can safely

approximate the inequality (11) by a linear constraint in (U ,Y ). Formally, we have to the following

two-term disjunction over an extended formulation of the set of rank-one projection matrices:{
(U ,Y )

∣∣∣∣ −1≤U⊤x≤ Û⊤x,

x⊤ÛU⊤x+(Û −U)⊤x≥x⊤Y x

}∨{
(U ,Y )

∣∣∣∣ Û⊤x≤U⊤x≤ 1,

x⊤ÛU⊤x+(U − Û)⊤x≥x⊤Y x

}
.

(13)

Moreover, we can strengthen our convex relaxation (10) by imposing this disjunction and optimizing

over the two resulting convex problems. We formalize this result in the following proposition (see

also Saxena et al. 2010, Section 3):

Proposition 1. Set k = 1 and let (Ŷ , Û ,X̂, Θ̂) be an optimal solution to (10) such that

x⊤(ÛÛ⊤− Ŷ )x< 0, ∥x∥2 = 1 for some vector x∈Rn. Then, any solution to (10) with Y =UU⊤

satisfies (13), but (Ŷ , Û ,X̂, Θ̂) does not satisfy (13).

Proof of Proposition 1 Let U ,Y be matrices such that UU⊤ = Y . Then, we certainly have

x⊤ (Y −UU⊤)x= 0 for any vector x, which implies the disjunction is equivalent to requiring that

either U⊤x∈ [−1, Û⊤x] or U⊤x∈ [Û⊤x,1], which is trivially true.

On the other hand, at the point U = Û both sides of the disjunction require that x⊤(ÛÛ⊤ −

Ŷ )x≥ 0, which contradicts x⊤(ÛÛ⊤− Ŷ )x< 0. □

Remark 1. Observe that imposing (13) actually helps enforce U⊤U = I as well as Y = UU⊤.

Indeed, for any matrix U and Y := UU⊤ such that 0 ⪯ Y ⪯ I and tr(Y ) = k, Y has binary

eigenvalues, thus is an orthogonal projection matrix, and thus U⊤U = I. In other words, Y =UU⊤,

0⪯Y ⪯ I and tr(Y ) = k collectively imply U⊤U = I.
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We obtain our two-term disjunction by constructing a piecewise linear upper approximation of

∥U⊤x∥22 with two pieces (i.e., a single breakpoint). Our disjunction separates the previous solution

of the relaxation (Û , Ŷ ) because the upper approximation is tight at Û⊤x. We can construct

tighter approximations by considering multiple breakpoints. For example, we can consider the four

breakpoints {−1,−|u0|,+|u0|,1}, which yields the following three-piece linear upper approximation:

u2 ≤


−u−u|u0| − |u0| if u∈ [−1,−|u0|],
u2
0 if u∈ [−|u0|, |u0|],

u+u|u0| − |u0| if u∈ [|u0|,1],
(14)

while the five breakpoints {−1,−|u0|,0, |u0|,1} lead to:

u2 ≤


−u−u|u0| − |u0| if u∈ [−1,−|u0|],
−u|u0| if u∈ [−|u0|,0],
u|u0| if u∈ [0, |u0|],
u+u|u0| − |u0| if u∈ [|u0|,1].

(15)

In general, introducing more pieces results in a stronger but more expensive to compute disjunctive

bound. Therefore, there is a trade-off between the quality of the piecewise linear upper approxi-

mation and the number of convex optimization problems that need to be solved to compute the

corresponding bound, which we explore numerically in Section 5.

2.4. Eigenvector Disjunctions for the Rank k > 1 Case

Let us generalize our disjunctions to the case where k > 1. In this case, ∥U⊤x∥22 =
∑

j∈[k] ∥U⊤
j x∥22,

where Uj, j ∈ [k], is the jth column of U . Then, we apply our disjunctions to each term ∥U⊤
j x∥22

separately. For example, applying a piecewise linear upper bound with two pieces and breakpoints

{−1, Û⊤
j x,1} to each term leads to the following disjunction over 2k regions:

∨
L⊆[k]


(U ,Y )

∣∣∣∣∣∣∣∣∣∣∣∣∣

U⊤
j x ∈ [−1, Û⊤

j x] ∀ j ∈L,
U⊤

j x ∈ (Û⊤
j x,1] ∀ j ∈ [k] \L,

x⊤Y x ≤
∑
j∈L

(
x⊤UjÛ

⊤
j x+(Ûj −Uj)

⊤x
)

+
∑

j∈[k]\L

(
x⊤UjÛ

⊤
j x+(Uj − Ûj)

⊤x
)


. (16)

Moreover, we have the following corollary to Proposition 1:

Corollary 1. Let (Ŷ , Û ,X̂, Θ̂) be an optimal solution to (10) so that x⊤(ÛÛ⊤ − Ŷ )x< 0 for

some vector x ∈Rn such that ∥x∥2 = 1. Then, any solution to (10) with Y =UU⊤ satisfies (16),

but (Ŷ , Û ,X̂, Θ̂) does not satisfy (16).

Corollary 1 reveals that solving (10) and imposing the disjunction (16) in Problem (10) separates

the optimal solution to (10) whenever it is infeasible for the original problem (2) or (3).
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We close this section by remarking that in extending the disjunction in (13) beyond the rank-

one case, we encounter symmetry issues; if (Y ,U ,X,Θ) is a solution to the relaxation, then so

is (Y ,UΠ,X,Θ) for any k-by-k permutation matrix Π. Hence, Problem (10)’s lower bound may

not actually improve until we apply a disjunction for each permutation of the columns of U , which

is likely computationally prohibitive in practice. We partially alleviate these issues by exploring

different branching strategies and symmetry-breaking constraints (discussed in Section 4).

2.5. Comparison With McCormick Disjunctions

An alternative approach for strengthening our convex relaxation (10) is to perform a McCormick

disjunction on the variables Ui,j (McCormick 1976). Formally, we start with box constraints Ui,j ∈

[−1,1] and recursively partition the feasible region into smaller boxes Ui,j ∈ [U i,j,U i,j]. We also

introduce variables Vi,j1,j2 to model the product Ui,j1Ui,j2 . It is well documented that the convex

hull of the set
{
(v,x, y) : v= xy, (x, y)∈ [x,x]× [y, y]

}
, denotedM(x,x, y, y), is given by{

(v,x, y) : max
{
xy+ yx−xy,xy+ yx−xy

}
≤ v≤min

{
yx+xy−xy, yx+xy−xy

}}
.

Therefore, instead of our disjunctive approach with eigenvector cuts, we can use the aforementioned

McCormick relaxation to link U and V within each box. This eventually yields a disjunction over

relaxations of the following form:

min
Y ∈Conv(Yk

n),

U∈Rn×k,V ∈Rn×k×k

min
X∈Rn×m,Θ∈Sm

1

2γ
tr (Θ)+ g(X) (17)

s.t.

(
Y X
X⊤ Θ

)
⪰ 0, Y ⪰UU⊤,

n∑
i=1

Vi,j,j = 1 ∀ j ∈ [k],
n∑

i=1

Vi,j1,j2 = 0 ∀ j1, j2 ∈ [k] : j1 ̸= j2,

(Vi,j1,j2 ,Ui,j1 ,Ui,j2)∈M(U i,j1
,U i,j2 ,U i,j2

,U i,j2),
∀ i∈ [n],

∀ j1, j2 ∈ [k].

where the last constraint denotes a McCormick envelope over Vi,j1,j2 ,Ui,j1 ,Ui,j2 with box bounds

[U i,j1
,U i,j1 ]× [U i,j2

,U i,j2 ]. Unfortunately, as we observe in Section 5, this approach performs poorly

in practice and we often need to expand millions of nodes to improve the root node relaxation.

We provide insight into why this situation arises via the following result, which demonstrates

that, when n ≥ k + 2, disjuncting on a single variable Ui,j in each column j ∈ [k] of U does not

improve our root node relaxation (proof deferred to Section EC.1.1):

Proposition 2. Consider Problem (17) where n≥ k+2 and suppose that for every column j we

have a disjunction ∪t[U
t
i(j),j,U

t

i(j),j] for some index (i(j), j), but
[
U i,j′ ,U i,j′

]
= [−1,1] for all other

indices i′ ̸= i(j). Then, Problem (17) possesses the same optimal objective value as Problem (10).
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The McCormick disjunctions in Proposition 2 contain at least 2k regions, like our eigenvector

disjunctions, yet fail to improve upon the matrix perspective relaxation bound. Indeed, Proposition

2 (and its proof) reveals that we need to disjunct on at least two variables in a given column of U to

even have a hope of tightening the lower bound. This multilinear behavior stands in direct contrast

to our eigenvector disjunction, which separates the solution to the root node relaxation with a single

cut and often improves our root node relaxation immediately. This observation complements a

body of work demonstrating that McCormick relaxations are often dominated by other relaxations

in both theory and practice (Meyer and Floudas 2004, Kocuk et al. 2016, Khajavirad 2023).

Moreover, it challenges the ongoing practice in commercial non-convex solvers of using

McCormick, rather than eigenvector, disjunctions by default. Indeed, some branching strategies like

best-first search rely upon estimates of the improvement in solution quality after branching and

hence struggle when no branching decision at a root node improves the lower bound. Non-trivial

improvements are only obtainable after branching on multiple variables simultaneously via more

computationally intensive schemes such as strong branching (c.f. Achterberg et al. 2005). We return

to this topic in Section 4, when we propose our overall branching scheme.

3. Convex Relaxations, Valid Inequalities, and Presolving Strategies

In this section, we invoke a different characterization of low-rank matrices in terms of their deter-

minant minors to derive a new convex relaxation for our problems in Section 3.1, which improves

upon the matrix perspective relaxation (9). Since it is computationally significantly more expensive,

however, we do not use this improved relaxation in and of itself, but invoke it to design presolving

strategies in Section 3.2 and a strong and computationally convex relaxation in Section 3.3. Hence,

we tighten the matrix perspective relaxation (9) in a computationally affordable manner.

Our starting point is the observation that the rank of X is fully characterized by the following

well-known lemma (see, e.g., Horn and Johnson 1985):

Lemma 1. Let X be a matrix. Then, the rank of X is at most k if and only if all (k+1)× (k+1)

minors of X have determinant 0.

Lemma 1 provides a characterization of low-rank matrices that is complementary to the projection-

matrix characterization studied in the previous section. Indeed, one could design an entirely new

approach to certifiably optimal low-rank matrix completion using Lemma 1. Kocuk et al. (2018)

successfully applies this idea for optimal power flow problems where the rank k= 1. This approach

appears to be computationally prohibitive for k > 1, however, since explicitly constraining the

determinant of each (k + 1)× (k + 1) minor of X requires introducing a separate (semidefinite)

moment matrix for each minor. Instead, we decompose X into a sum of rank-one matrices, apply
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Lemma 1’s characterization to each rank-one matrix’s Shor relaxation individually, and combine

this characterization with our matrix perspective relaxation to obtain strong convex relaxations.

Our perspective on Lemma 1 is similar to the mixed-integer community’s perspective on pure

cutting-plane methods in mixed-integer optimization (c.f. Gomory 1958, Balas et al. 1996) and

their eventual integration within commercial branch-and-bound solvers. Indeed, initial attempts

at developing pure cutting-plane solvers for MIO were not competitive with branch-and-bound

schemes since they typically required exponentially many cuts to converge. Eventually, however,

various authors proposed introducing a small number of cuts within a branch-and-bound procedure

and demonstrated that this accelerated branch-and-bound’s performance, often substantially (c.f.

Bixby and Rothberg 2007). Similarly, while using Lemma 1 as the basis for a new approach to

low-rank optimization is likely computationally prohibitive, we argue throughout this section that

Lemma 1 enhances the projection matrix framework, often substantially.

3.1. Convex Relaxations

In this section, we develop a new convex relaxation for low-rank basis pursuit and matrix completion

problems, first in the rank-one case for clarity of exposition, and subsequently in the rank-k case.

Our approach exploits the characterization of a rank-one matrix in terms of its two-by-two minors

and thus could be applied to other low-rank problems.

We proceed by taking the following four steps: First, we introduce a matrix to model the outer

product of each vectorized two-by-two minor of X with itself, in particular letting Wi,j model X2
i,j

in all moment matrices. Second, we use that each two-by-two minor should have zero determinant

to eliminate some moment variables. Third, we replace X2
i,j with Wi,j in the objective where

applicable. Finally, we link Θi,j (which, in spirit, models
∑m

ℓ=1Xi,ℓXj,ℓ) with the appropriate terms

in the Shor matrix to impose appropriate objective pressure in our relaxation and avoid allowing

any of the entries Wi,j to be set to +∞ without affecting the relaxation.

Formally, we have the following result:

Proposition 3. The following relaxation is at least as strong as the matrix perspective relaxation

(9) for basis pursuit and matrix completion problems where k= 1:

min
X,W∈Rn×m,

Y ∈Conv(Y1
n),

Θ∈Sm
+ ,V

h(X,W ,Θ) (18)

s.t.

(
Y X
X⊤ Θ

)
⪰ 0,

1 Xi1,j1 Xi1,j2 Xi2,j1 Xi2,j2

Xi1,j1 Wi1,j1 V 1
i1,(j1,j2)

V 2
(i1,i2),j1

V 3
(i1,i2),(j1,j2)

Xi1,j2 V 1
i1,(j1,j2)

Wi1,j2 V 3
(i1,i2),(j1,j2)

V 2
(i1,i2),j2

Xi2,j1 V 2
(i1,i2),j1

V 3
(i1,i2),(j1,j2)

Wi2,j1 V 1
i2,(j1,j2)

Xi2,j2 V 3
(i1,i2),(j1,j2)

V 2
(i1,i2),j2

V 1
i2,(j1,j2)

Wi2,j2

⪰ 0,
∀ i1 < i2 ∈ [n],

∀ j1 < j2 ∈ [m],
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Θj1,j2 =
∑
i∈[n]

V 1
i,(j1,j2)

∀ j1 < j2 ∈ [m], Θj,j =
∑
i∈[n]

Wi,j, ∀ j ∈ [m],

where the function h(X,W ,Θ) is defined as:

• In the basis pursuit/noiseless case (2),

h(X,W ,Θ) :=

{
1
2γ
tr(Θ) if Xi,j =Ai,j ∀(i, j)∈ I,

+∞ otherwise.

• In the matrix completion/noisy case (3),

h(X,W ,Θ) :=
1

2γ
tr(Θ)+

1

2

∑
(i,j)∈I

(
A2

i,j − 2Xi,jAi,j +Wi,j

)
.

Observe that Proposition 3 relies on the presence of a tr(Θ) term, derived from the strongly convex

∥X∥2F term, to apply objective pressure so that the relaxation is non-trivial. Indeed, without this

term, we can set Wi,j to be arbitrarily large for any (i, j) /∈ I, potentially weakening the relaxation

substantially. Accordingly, we refer to (18) as a relaxation designed for strongly convex low-rank

problems here and throughout the paper.

Remark 2. As can be deduced from Beck (2007) (see also Wang and Kılınç-Karzan 2022, Section

1.1.2), Problem (18)’s relaxation is tight for rank-one two-by-two matrix completion and basis

pursuit problems of the form

min
Xi,j ,Xi,ℓ,Xk,j ,Xk,ℓ

g(X) s.t. Xi,jXk,ℓ =Xi,ℓXk,j, (19)

where I, the set of observed entries of A, is arbitrary. Therefore, we should expect that applying

a Shor relaxation to each two-by-two minor separately in conjunction with the matrix perspec-

tive relaxation yields a strong overall relaxation in practice. Indeed, the same phenomena has

been observed in several different contexts for mixed-integer nonlinear optimization problems (c.f.

Frangioni et al. 2020, Wei et al. 2022).

Proof of Proposition 3 This follows immediately from the fact that any feasible solution to (18)

is feasible in (9) with the same objective value. □

Section 5 augments Proposition 3 by providing many examples where (18) provides a strictly

stronger lower bound than (9), sometimes to the extent that, when combined with a feasible solution

from a heuristic, the bound gap from (18) is an order of magnitude smaller than that from (9).

We now generalize this relaxation to matrix completion and basis pursuit problems where k > 1

by decomposing X =
∑k

t=1X
t, replacing X with

∑k

t=1X
t everywhere applicable, and requiring

that each slice Xt (in spirit, a rank-one matrix) satisfies our aforementioned Shor relaxation of the

2× 2 minor characterization. Moreover, we model the term X2
i,j =

(∑k

t=1X
t
i,j

)2

=
∑

t∈[k](X
t
i,j)

2 +

2
∑

t′<tX
t
i,jX

t′
i,j in the objective by also performing a Shor relaxation on the moment matrix gener-

ated by the vector
(
1 X1

i,j X2
i,j . . . Xk

i,j

)
and selecting the appropriate off-diagonal terms to model

each product Xt1
i,jX

t2
i,j. All in all, we have the following result:
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Corollary 2. The following relaxation is at least as strong as the matrix perspective relaxation

for matrix completion and basis pursuit problems where k ∈ [min(n,m)]:

min
Xt,W ,W t∈Rn×m ∀t∈[k],

Y ∈Conv(Yk
n),

Θ∈Sm
+ ,V

h

∑
t∈[k]

Xt,W ,Θ

 (20)

s.t.

(
Y

∑
t∈[k]X

t∑
t∈[k]X

t⊤ Θ

)
⪰ 0,

1 Xt
i1,j1

Xt
i1,j2

Xt
i2,j1

Xt
i2,j2

Xt
i1,j1

W t
i1,j1

V 1,t
i1,(j1,j2)

V 2,t
(i1,i2),j1

V 3,t
(i1,i2),(j1,j2)

Xt
i1,j2

V 1,t
i1,(j1,j2)

W t
i1,j2

V 3,t
(i1,i2),(j1,j2)

V 2,t
(i1,i2),j2

Xt
i2,j1

V 2,t
(i1,i2),j1

V 3,t
(i1,i2),(j1,j2)

W t
i2,j1

V 1,t
i2,(j1,j2)

Xt
i2,j2

V 3,t
(i1,i2),(j1,j2)

V 2,t
(i1,i2),j2

V 1,t
i2,(j1,j2)

W t
i2,j2


⪰ 0,

∀ i1 < i2 ∈ [n],

∀ j1 < j2 ∈ [m],

∀ t∈ [k],



1 X1
i,j X2

i,j . . . Xk
i,j

X1
i,j W 1

i,j H1,2
i,j . . . H1,k

i,j

X2
i,j H1,2

i,j W 2
i,j . . . H2,k

i,j

...
...

...
. . .

...

Xk
i,j H1,k

i,j H2,k
i,j . . . W k

i,j


⪰ 0, ∀ i∈ [n], j ∈ [m],

Θj,j =
∑
i∈[n]

Wi,j, Wi,j =
∑
t∈[k]

W t
i,j +

∑
t′∈[k]:t′ ̸=t

Ht′,t
i,j

 ∀ i∈ [n], j ∈ [m].

As we observe numerically in Section 5, this relaxation is extremely powerful in practice for

k= 1, often yielding bound gaps of less than 1% when contrasted against the best solution found

via an alternating minimization heuristic. Unfortunately, it is also computationally prohibitive to

solve this relaxation at scale. Accordingly, we use information from this relaxation to strengthen

our matrix perspective relaxation (9). This is the topic of the next two subsections.

3.2. Presolving Techniques for Basis Pursuit

In this section, we develop a suite of presolving techniques for low-rank basis pursuit problems

which exploits Lemma 1’s characterization to eliminate variables and impose additional constraints.

We remark that the idea of presolving basis pursuit problems by filling in entries fully prescribed by

a determinant minor appeared in Nan (2009), and the idea of solving mixed-integer optimization

problems more efficiently by preprocessing them is widely known; see Gamrath et al. (2015) for

a review. However, to our knowledge, the more general presolving technique for basis pursuit and

matrix completion problems we present here is new.
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Rank-One Basis Pursuit: We consider the two-by-two minors in rank-one basis pursuit problems,

before generalizing our analysis to matrix completion problems. In such a two-by-two minor:(
Xi,j Xi,ℓ

Xk,j Xk,ℓ

)
,

we know between zero and four entries of the minor, and by Lemma 1 have the governing equation

Xi,jXk,ℓ =Xi,ℓXk,j. If we know all or none of the entries in the minor then the minor is uninteresting,

since we either have no entries to complete or no information with which to complete entries.

If there is one missing entry (e.g., Xk,ℓ) in 2× 2 minor, then by the determinant minor equation

we can compute its value, Xk,ℓ =
Ai,ℓAk,j

Ai,j
—assuming Ai,j ̸= 0; if Ai,j = 0 then this minor gives us no

information about Xk,ℓ and we cannot presolve it—without even solving an optimization problem.

Accordingly, for rank-one basis pursuit problems, we run a presolving step to inspect all 2 × 2

minors and fill the entries that can be computed in this manner.

We can also derive valid equality constraints when there are exactly two missing entries that

belong to the same row or column. Assume that the two missing entries belong to the same column

and are Xk,ℓ and Xi,ℓ (by transposition, we can treat the case where they belong to the same row

in a similar fashion). Since they appear in different terms of the determinant constraint, they must

satisfy the following linear relationship:

Xk,ℓ =Xi,ℓ

Ak,j

Ai,j

.

In our numerical algorithm, we consider imposing these additional linear constraints at the root

node of our branch-and-bound scheme, after having completed the minors with one missing entry.

A subtlety in our implementation is that if an equality constraint links Xk,ℓ and Xi,ℓ and a second

constraint links Xi,ℓ and Xt,ℓ then Xk,ℓ and Xt,ℓ are already linked, and imposing an additional

equality constraint is redundant. So, we only impose constraints not implied by other constraints.

If there are two missing entries that belong to a different row and a different column or if three

entries are missing, we cannot presolve one of the missing entries or derive any additional valid

convex constraint. We now extend our presolving strategy to rank-two problems and suggest how

this approach can be further extended to k > 2.

Rank-Two Basis Pursuit: In rank-two basis pursuit problems, we are interested in deriving valid

inequalities from 3× 3 minors of the formXi1,j1 Xi1,j2 Xi1,j3

Xi2,j1 Xi2,j2 Xi2,j3

Xi3,j1 Xi3,j2 Xi3,j3

 ,
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which must have determinant zero in any rank-two solution, by Lemma 1. Therefore, we now have

the following governing equation

Xi1,j1Xi2,j2Xi3,j3 +Xi1,j2Xi2,j3Xi3,j1 +Xi1,j3Xi2,j1Xi3,j2

−Xi1,j1Xi2,j3Xi3,j2 −Xi1,j2Xi2,j1Xi3,j3 −Xi1,j3Xi2,j2Xi3,j1 = 0. (21)

We now consider some special cases of this constraint that lend themselves readily to presolving.

Analogously to the rank-one case, if there is exactly one missing entry in any 3× 3 minor then

we can simply compute its value by solving (21). As in the rank-one case, we can loop over all 3×3

minors and apply this presolving procedure wherever possible before running branch-and-bound.

We remark that the same procedure can be applied in the rank-k case, although the probability

that a given minor has exactly one missing entry degrades with k; see also Section EC.2 for a more

detailed description and analysis of our presolving strategy.

Alternatively, if there are at most three missing entries in the same row or column of a 3× 3

minor, it is possible to impose valid equalities in the problem’s original space without resorting to

a Shor relaxation. For example, if we have a sparsity pattern of the form ∗ ∗ ∗✓ ✓ ✓
✓ ✓ ✓

 ,

where “∗” denotes a missing entry and “✓” denotes a known entry, then (21) becomes a linear

equality. More generally, if at most one row or column in a (k+1)× (k+1) minor is missing in a

rank-k problem then we can apply the same approach to derive valid equality constraints.

3.3. Partial Convex Relaxations

In this section, we develop more scalable yet less tight semidefinite relaxations than those proposed

in Section 3.1, by imposing a subset of the semidefinite constraints in the computationally intensive

relaxation (20) and augmenting the relaxation with quadratic constraints. The primary motivation

for this development is that, at scale, the computationally intensive relaxation (20) is stronger

than the matrix perspective relaxation, but is also computationally intractable. Accordingly, a

tractable version of this relaxation is desirable in practice. We remark that similar ideas of partial

Lasserre relaxations have already been successfully implemented in the context of mixed-integer

optimization (c.f. Kronqvist et al. 2021).

To develop our relaxation, we begin with the following problem, which is equivalent to (9) but

also includes each slice Xt and variables Wi,j to model X2
i,j for each (i, j):

min
Xt∈Rn×m ∀ t∈[k], W∈Rn×m,

Y ∈Conv(Y1
n), Θ∈Sm

+

h

∑
t∈[k]

Xt,W ,Θ

 (22)
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s.t.

(
Y

∑
t∈[k]X

t∑
t∈[k]X

t⊤ Θ

)
⪰ 0,

Θj,j =
∑
i∈[n]

Wi,j,

∑
t∈[k]

Xt
i,j

2

≤Wi,j, ∀ i∈ [n], j ∈ [m].

Given a solution to this relaxation, we proceed in the following way: we select a subset of the

2× 2 minors of X according to a pre-specified criteria, e.g., all 2× 2 minors where all four entries

(i1, i2, j1, j2) are observed, and a random sample of 2× 2 minors where at least three entries are

observed. Next, for each such minor (i1, i2, j1, j2), we introduce appropriately indexed variables

V ,W t,H, omit the constraint linking Xt
i,j and Wi,j, and impose the following constraints:

1 Xt
i1,j1

Xt
i1,j2

Xt
i2,j1

Xt
i2,j2

Xt
i1,j1

W t
i1,j1

V 1,t
i1,(j1,j2)

V 2,t
(i1,i2),j1

V 3,t
(i1,i2),(j1,j2)

Xt
i1,j2

V 1,t
i1,(j1,j2)

W t
i1,j2

V 3,t
(i1,i2),(j1,j2)

V 2,t
(i1,i2),j2

Xt
i2,j1

V 2,t
(i1,i2),j1

V 3,t
(i1,i2),(j1,j2)

W t
i2,j1

V 1,t
i2,(j1,j2)

Xt
i2,j2

V 3,t
(i1,i2),(j1,j2)

V 2,t
(i1,i2),j2

V 1,t
i2,(j1,j2)

W t
i2,j2


⪰ 0, ∀ t∈ [k],



1 X1
i,j X2

i,j . . . Xk
i,j

X1
i,j W 1

i,j H1,2
i,j . . . H1,k

i,j

X2
i,j H1,2

i,j W 2
i,j . . . H2,k

i,j

...
...

...
. . .

...

Xk
i,j H1,k

i,j H2,k
i,j . . . W k

i,j


⪰ 0, ∀ i∈ {i1, i2}, j ∈ {j1, j2},

Wi,j =
∑
t∈[k]

W t
i,j +

∑
t′∈[k]:t′ ̸=t

Ht′,t
i,j

 ∀ i∈ {i1, i2}, j ∈ {j1, j2}.

All in all, we impose k 5× 5 PSD constraint and at most 4 (k+ 1)× (k+ 1) PSD constraint for

each 2× 2 submatrix we aim to model, which allows us to control the computational complexity

of our relaxation via the number of cuts at each problem size. In particular, the computational

complexity of modeling a Shor relaxation of a given 2× 2 minor scales independently of n,m.

4. A Custom Branch-and-Bound Algorithm

In this section, we propose a nonlinear branch-and-bound framework to obtain ϵ-optimal and ϵ-

feasible solutions to Problem (6) by recursively solving its semidefinite relaxation (10), strengthened

by the techniques described in Section 3, and partitioning the feasible region via the eigenvector

disjunctions derived in Section 2. Our approach relates to the approach proposed in Anstreicher

(2022) for trust-region problems, although we address a different optimization problem using a

different convex relaxation at the root node, and consider letting the rank exceed one. We first

provide a high-level description of our approach and relevant pseudocode before describing our
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branching and incumbent generation strategies in more detail; see also Belotti et al. (2013) and

references therein for a general theory of nonlinear branch-and-bound, and our associated GitHub

repository for our full implementation.

4.1. Pseudocode and Convergence Results

At the root node, we solve the matrix perspective relaxation (10), possibly strengthened with the

presolving techniques from Section 3.2 and some of the valid inequalities from Section 3.3.

After solving the relaxation, we obtain a solution (Ŷ , Û) and compute the smallest eigenvector

of ÛÛ⊤− Ŷ , denoted x. If x⊤
(
ÛÛ⊤− Ŷ

)
x≥−ϵ then, recalling that Ŷ ⪰ ÛÛ⊤, we have that

Ŷ is, up to a tolerance of ϵ, a projection matrix and solves (6) to optimality and ϵ-feasibility.

Otherwise, we have x⊤
(
ÛÛ⊤− Ŷ

)
x<−ϵ and we apply a disjunction, e.g., (16), as in Section 2.

This disjunction generates a new node or subproblem for each piece of the disjunction, which is

appended to the list of open nodes and eventually selected for branching.

We proceed recursively, by selecting a subproblem from the list of open nodes, solving the

corresponding convex relaxation, and imposing a new disjunction which creates more nodes, until

we identify an ϵ-feasible solution (Ŷ , Û). All in all, we obtain a search tree where each node models

a semidefinite relaxation and each edge corresponds to selecting one region of a disjunction.

To avoid retaining each node in memory and maintain a search tree of a practical size, we also

perform a prune or fathom step (i.e., do not impose an additional disjunction) in three different

situations. First, if λmin(ÛÛ⊤ − Ŷ ) ≥ −ϵ then we have an ϵ-feasible solution which provides a

global upper bound on (6)’s optimal value and we need not impose additional disjunctions at this

node. As we establish in Theorem 1, this is guaranteed to occur at a sufficiently large tree depth for

any ϵ > 0. Second, if our continuous relaxation is infeasible, as may occur in basis pursuit problems.

Third, if the value of the relaxation at a given node is within ϵ of our global upper bound, then no

solution with the constraints inherited from this node can improve upon an incumbent solution by

more than ϵ and we therefore do not branch.

We describe our overall branch-and-bound scheme in Algorithm 1; implementation details will

be made clear throughout the rest of this section. In Algorithm 1, we describe a subproblem as a

set of constraints Q and a depth t. The constraints in Q stem from the eigenvector cuts described

in Section 2 and are parameterized by the solution at which they were obtained, (Û , Ŷ ), the most

negative eigenvector x, and a vector z ∈ [q]k encoding which one of the qk regions we are considering.

For concision, we denote f i;q(·; u0) the ith piece of the piece-wise linear upper-approximation with

q pieces of u 7→ u2, obtained from the breakpoint u0. To verify that Algorithm 1 convergences,

we prove in Theorem 1 that a breadth-first node selection strategy which iteratively minimizes

(10) and imposes a disjunctive cut of the form (16), according to a most negative eigenvector of
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UU − Y ⊤, an optimal solution to (10) at the current iterate, eventually identifies an ϵ-feasible

solution (where λmin(UU⊤ − Y ) > −ϵ) within a finite number of iterations for any ϵ > 0. The

proof of Theorem 1 reveals that any node sufficiently deep in our search tree which contains a

feasible solution to the semidefinite relaxation (intersected with appropriate constraints from our

disjunctions) gives an ϵ-feasible solution to the original problem. Therefore, due to the enumerative

nature of branch-and-bound, this result verifies that our approach converges for any search and

node selection strategy, possibly with a different number of pieces in each disjunction. Our proof

technique is fairly standard and bears resemblance to the proof of convergence of other cutting-

plane methods (see, e.g., Mutapcic and Boyd 2009)—proof deferred to Section EC.1.2:

Theorem 1. Let (Yℓ,Uℓ) denote a solution generated by the ℓth iterate of the following procedure:

• For each t ∈ N, set (Yt,Ut) according to the optimal solution of (10), possibly with

disjunctive cuts of the form (16).

• If λmin(UtUt−Yt)≥−ϵ then terminate.

• Else, impose the disjunctive cut (16) in (10) with the eigenvector xt, where

xt ∈ argmin
x∈Rn: ∥x∥2=1

⟨xx⊤,UtU
⊤
t −Yt⟩.

For any ϵ > 0 there exists an ℓ∈N so that λmin(UℓUℓ−Yℓ)≥−ϵ and Yℓ is an optimal, ϵ-feasible

solution to (6). Moreover, suppose we set ϵ→ 0. Then, any limit point of {Yt}∞t=1 solves (6).

We now expound on implementation details of Algorithm 1 pertaining to node selection (Section

4.2), the branching strategy used (Section 4.3), and incumbent selection (Section 4.4).

4.2. Node Selection: Depth-First vs Breadth-First vs Best-First Search

One of the most significant design decisions in a branch-and-bound scheme is the node selection

strategy employed (Wolsey and Nemhauser 1999). The three node selection heuristics which we

consider in this work are depth-first search (where nodes are selected in a last-in-first-out manner),

breadth-first search (where nodes are selected in a first-in-first-out manner), and best-first search

(where the node with the lowest remaining lower bound is selected at each iteration). One could

also consider other node selection rules, such as selecting the node with disjunctions such that the

solution to its parent node violates its disjunctions maximally (most infeasible node); see Belotti

et al. (2013) for a review. However, in practice, such branching rules are usually less efficient than

the aforementioned rules (Achterberg et al. 2005).

Breadth-first and best-first search ensure that the overall lower bound increases at most itera-

tions, provided no ties exist. As argued by Lawler and Wood (1966), best-first search is potentially
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Algorithm 1 Branch-and-bound scheme for low-rank matrix completion problems (10)

1: Initialize D=∅, t= 0, Zlower =−∞, Zupper =+∞;

2: Initialize a queue of problems derived from Problem (10), Q= { (D, t) };

3: while Q is non-empty and Zupper−Zlower > ϵ do

4: Retrieve a problem (D, t) from the queue: Q←Q\ (D, t);

5: Solve the following problem, yielding (Θ̂(t+1), Ŷ(t+1),X̂(t+1), Û(t+1)) with objective Z:

min
Θ∈Sm

Y ∈Sn

X∈Rn×m

U∈Rn×k

1

2

∑
(i,j)∈I

(Xi,j −Ai,j)
2 +

1

2γ
tr (Θ)

such that

(
Y X
X⊤ Θ

)
⪰ 0, 0⪯Y ⪯ I, tr (Y )≤ k,

(
Y U
U⊤ I

)
⪰ 0,

U⊤
j x∈ [bzj , bzj+1] ∀ j ∈ [k]

⟨Y ,xx⊤⟩ ≤
k∑

j=1

f zj ;q
(U⊤

j x; Û⊤
j x)

∀ (Û , Ŷ ,x,z)∈D

6: if Û(t+1)Û
⊤
(t+1)− Ŷ(t+1) ⪰ 0 then

7: if Z <Zupper then

8: Zupper←Z

9: (Θopt,Yopt,Xopt,Uopt)← (Θ̂(t+1), Ŷ(t+1),X̂(t+1), Û(t+1))

10: end if

11: else if Z <Zupper then

12: Compute (unit-length) x(t+1) such that x⊤
(t+1)

(
Û(t+1)Û

⊤
(t+1)− Ŷ(t+1)

)
x(t+1) < 0;

13: Generate qk subproblems and add them to the queue:

14: for each z ∈ [q]k do

15: Dz :=D∪{(Û(t+1), Ŷ(t+1),x(t+1),z)}

16: Q←Q∪{ (Dz, t+1) }

17: end for

18: Update Zlower as the minimum of the lower bounds of all unexplored nodes.

19: end if

20: end while

21: return (Θopt,Yopt,Xopt,Uopt)

advantageous, because if the set of branching directions is fixed, then any nodes expanded under

this strategy must also be expanded under any other strategy. However, both strategies incur a

high memory cost from maintaining many unexplored nodes in the queue. On the other hand,

depth-first search maintains a queue size which is a linear function of the problem size throughout
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the entire search process (Ibaraki 1976), although at the price of spending less time tightening the

upper bound and, therefore, often needed to expand more nodes overall.

While we assumed a breadth-first strategy to establish the convergence of Algorithm 1 in Theo-

rem 1, we observe numerically in Section 5 that best-first search outperforms the other strategies

considered here in terms of runtime. Accordingly, except where explicitly stated otherwise, we use

best-first search in our numerical experiments.

4.3. Branching Strategy

When running our branch-and-bound algorithm on a rank-k matrix, each node that is not fathomed

generates qk, q≥ 2, child nodes corresponding to the qk regions of the disjunction. For example, the

disjunction (16) generates 2k child nodes, but, as explained for the rank-one case in Section 2.3,

more fine-grained upper approximations of the ℓ22 norm lead to disjunctions over 3k or 4k regions.

Accordingly, another algorithmic design decision is selecting the number of pieces q ≥ 2 which

should be used in our disjunctive cuts. Indeed, increasing the number of child nodes generated at

each iteration, qk, improves the tightness of the bound at the expense of additional computational

time for solving all qk subproblems. We investigate this tradeoff numerically in Section 5.

4.4. Incumbent Selection via Alternating Minimization

High-quality feasible solutions dramatically accelerate the convergence of branch-and-bound algo-

rithms such as Algorithm 1, by providing an initial upper bound which allows Algorithm 1’s search

tree to be aggressively pruned. Accordingly, in our implementation of Algorithm 1 on matrix com-

pletion problems with noise, we supply an initial incumbent solution derived from an alternating

minimization heuristic. Note however that we do not provide an initial solution at the root node for

noiseless matrix completion problems. Indeed, identifying feasible solutions to noiseless problems

is about as hard as solving them to optimality.

To implement the alternating minimization heuristic, we follow Burer and Monteiro (2003, 2005)

in applying the nonlinear reformulation X =UV . Starting with a solution Û 0, we have:

V̂ t+1 = argmin
V ∈Rk×m

1

2

∑
(i,j)∈I

(
(Û tV )i,j −Ai,j

)2

+
1

2γ
∥Û tV ∥2F (23)

Û t+1 = argmin
U∈Rn×k

1

2

∑
(i,j)∈I

(
(UV̂ t+1)i,j −Ai,j

)2

+
1

2γ
∥UV̂ t+1∥2F (24)

and we iteratively solve for (Û t, V̂ t) until we either converge to a local minimum or exceed a limit

on the number of iterations. To initialize the method, we obtain an initial X by setting:

(Xinitial)i,j =

{
Ai,j (i, j)∈ I
0 otherwise.

(25)
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and recover an initial Û 0 ∈Rn×k from Xinitial as the U -factor of the compact SVD of Xinitial. Upon

convergence, we let Xaltmin := ÛendV̂end and compute Ualtmin via a compact SVD of Xaltmin, to

ensure Ualtmin has orthogonal columns.

Since the alternating minimization approach is only guaranteed to converge to a stationary (or

locally optimal) solution, the solution obtained at the root node might not be globally optimal.

Accordingly, we now develop a strategy for improving this solution which is very much inspired

by the work of Danna et al. (2005), namely, computing high-quality solutions at various nodes

of our branch-and-bound strategy. We consider running alternating minimization on subregions

defined by nodes of our search tree by requiring that U remains (approximately) within the feasible

region defined by the node. After solving the relaxation (10) at a child node and obtaining a

relaxed solution (YR,UR,XR,ΘR), we consider rounding YR to be the projection matrix Yround =

UroundU
⊤
round, where Uround is the U -factor of a compact SVD of YR. We initialize an alternating

minimization process by Uround and replace (24) with

Û t+1 = argmin
U∈Rn×k, U∈PU ,

∥Ui∥22≤1, ∥Ui±Uj∥22≤2 ∀i,j∈[k].

1

2

∑
(i,j)∈I

(
(UV̂ t+1)i,j −Ai,j

)2

+
1

2γ
∥UV̂ t+1∥2F , (26)

where PU is a polyhedron composed of linear constraints on U which are derived from disjunctions

applied from the root node to this child node, and we impose a second-order cone relaxation of the

constraint U⊤U ⪯ I, to approximately restrict alternating minimization within the set of feasible

U ’s defined by the current node without incurring the computational expense of repeatedly solving

SDOs, as suggested by Atamtürk and Gómez (2019), Bertsimas et al. (2022).

After convergence, we obtain a feasible solution via Xaltmin := ÛendV̂end and taking a compact

SVD to obtain Ualtmin. Since we want the subregions which we run this alternating minimization

procedure on to be diverse, we select the nodes on which we run alternating minimization randomly,

with a probability of selection that degrades with the tree depth. In Section 5, we investigate

the trade-off between the improved upper bounds from implementing alternating minimization at

certain leaf nodes against its time cost.

5. Numerical Experiments

In this section, we evaluate the numerical performance of our branch-and-bound scheme, imple-

mented in Julia version 1.7.3 using Mosek version 10.0 to solve all semidefinite optimization prob-

lems. All experiments were conducted on MIT’s supercloud cluster (Reuther et al. 2018), which

hosts Intel Xeon Platinum 8260 processors. To perform our experiments, we generate synthetic

instances of matrix completion and basis pursuit problems, as described in Section 5.1.

We first evaluate the effectiveness of the valid inequalities and presolving strategies presented

in Section 3 in strengthening the root node relaxation, in Section 5.2. Next, in Section 5.3, we
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benchmark the performance of different node selection, branching, breakpoint, and incumbent

generation strategies for our branch-and-bound algorithm. Finally, we evaluate the scalability of

our branch-and-bound algorithm in Section 5.4, both in terms of its ability to identify an optimal

solution and find feasible solutions that outperform a naive alternating minimization strategy. Our

numerical experiments can be found at https://github.com/sean-lo/OLRMC_experiments.

5.1. Generation of Synthetic Instances

We compute a matrix of observations, Afull ∈ Rn×m, from a low-rank model: Afull = UV + ϵZ,

where the entries of U ∈Rn×k,V ∈Rk×m, and Z ∈Rn×m are drawn independently from a standard

normal distribution, and ϵ≥ 0 models the degree of noise. We fix ϵ= 0 for basis pursuit and ϵ= 0.1

for matrix completion instances. We then sample a random subset I ⊆ [n] × [m], of predefined

size, which contains at least one entry in each row and column of the matrix (see also Candès

and Recht 2009, Section 1.1.2). To do so, if the target size |I| is large enough, we iteratively add

random entries until this property is satisfied, which will happen with less than |I| draws with high

probability. In regimes where |I| is small, i.e., close to k(n+m), we use a random permutation

matrix to sample k(n+m) entries, one in each row and column, directly. We then independently

sample the remaining entries of I to reach the desired size.

For simplicity, in our experiments, we set m= n and only vary the dimension of the problem, n,

and the number of observed entries, |I|. Also, to allow for a better comparison across instances of

varying size n, we generate one largeN×N matrixAfull and consider its top-left n-by-n submatrices

for various values of n, which creates correlations between the instances generated for different

values of n—the instances generated for a given size n, however, remain independent since they

come from different matrices Afull obtained with different random seeds.

5.2. Root Node: Strengthened Relaxations and Presolving

In this section, we evaluate the benefit of the valid inequalities and presolving technique presented

in Section 3, for matrix completion and basis pursuit problems, respectively.

5.2.1. Valid Inequalities for Matrix Completion Problems As argued in Section 3.3,

we can strengthen the matrix perspective relaxation (9) by imposing additional semidefinite con-

straints (Shor LMIs) on all 2× 2 minors of the slices of X, Xt, t∈ [k]. To minimize the impact on

computational tractability, however, we do not impose these constraints for all minors. Instead, we

consider two-by-two minors with all four entries present in I (denotedM4), or with at least three

entries in I (M3). We compare the original relaxation (9) with (22) strengthened with Shor LMIs

for all minors inM4, all minors inM4 and a (random) half of the minors inM3, and all minors

https://github.com/sean-lo/OLRMC_experiments
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inM4 andM3, using two metrics: optimality gap at the root node (the upper bound is obtained

via alternating minimization) and computational time for solving the relaxation.

We first consider rank-one matrix completion problems with n ∈ {10,20,30,50,75,100}, and

|I|= 2n log(n). Figures 1a and 1b represent the optimality gap at the root node and computational

time respectively of using these strengthened relaxations. We observe that, while adding Shor LMIs

for minors inM4 only has a moderate impact on the optimality gap, considering all minors inM4

andM3 reduces the optimality gap by one to two orders of magnitude, often solving the problem

to optimality, but substantially increases the computational time. Alternatively, introducing Shor

LMIs for only half the minors inM4 andM3 partially alleviates the computational burden while

retaining some of the benefits in relaxation tightness. This provides us with greater flexibility to

control the optimality-tractability trade-off. Figure EC.1 and Table EC.1 in EC.3.1 report the

optimality gap and computational time of each method and each instance.

Figures 1c–1d display the same results for rank-k (k= 2) matrix completion problems with n∈

{10,20,30,50,75,100}, and |I| = 2kn log(n). Unfortunately, we do not observe any improvement

in the optimality gaps in these instances. Accordingly, future work could involve investigating

technqiques for improving the matrix perspective relaxation when k > 1.

5.2.2. Presolving for Basis Pursuit We now evaluate the efficacy of our presolving strategy

for basis pursuit problems, as laid out in Section 3.2. First, we investigate the proportion of entries

of an n×n matrix that our approach fully prescribes. We consider different regimes for |I|. From

an information-theoretic perspective, on the order of kn log(n) entries are necessary for any method

to successfully complete a low-rank matrix (Candès and Recht 2009). Accordingly, we also consider

slower and faster rates: |I| = pk r(n) with p = 2 and r(n) ∝ {n,n log10(n), n6/5 log10(n), n
1.5, n2}.

Figure 2 displays the proportion of random instances that are fully presolved, as n increases.

When |I| grows strictly faster than n log10(n), more than 90% of instances can be fully presolved

when n≥ 40, both in the rank-one and rank-two cases, thus demonstrating the effectiveness of our

presolving strategy. Moreover, when |I| is on the order of n log10(n), the presolving step successfully

solves the instance when n exceeds 20, without requiring any optimization.

In addition to reducing the number of variables in our optimization problem, presolving also

improves the quality of the matrix perspective relaxation. We now compare the optimality gap

at the root node (where we obtain an upper bound by running our branch-and-bound method

to optimality on each instance) obtained via different convex relaxations: (i) the original matrix

perspective relaxation (9); (ii) the relaxation (i) after presolving the entries belonging to two-by-

two minors with three observed entries,M3; (iii) the approach (ii) strengthened by linear equality

constraints for the minors with two observed entries, M2; and (iv) the relaxation (iii) further
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(a) Root node relative gap (rank-1) (b) Time taken (rank-1)

(c) Root node relative gap (rank-2) (d) Time taken (rank-2)

Figure 1 Root node relative gap and time taken at the root node for rank-k (k ∈ {1,2}) n-by-n matrix completion

problems with 2kn log10(n) filled entries, in a regime with low regularization (γ = 80.0).

(a) Rank-1 (b) Rank-2

Figure 2 Comparison of proportion of fully presolved instances against problem size n for rank-k (k ∈ {1,2})

n-by-n basis pursuit problems, varying the number of entries observed initially, where p = 2.0. Each

point is the average of 10,000 random problem instances with the specified parameters.
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strengthened by Shor LMIs on minors fromM1. Results on rank-one basis pursuit problem with

|I|= pn log10(n) are presented in Figure 3. We observe that presolving alone completely closes the

optimality gap, so further strengthening is unnecessary. For example, presolve closes the optimality

gap at the root node from 33% for n= 10, p= 2.0 to zero.

For rank-two basis pursuit problems, for the problems which we cannot presolve fully, approaches

(iii) and (iv) yield instances that are too large for Mosek to solve, even at the root node. Further-

more, approach (ii) followed by our branch-and-bound algorithm runs into out-of-memory errors

so, unfortunately, we cannot properly assess the benefits of presolve in yielding tighter relaxations.

Overall, for basis pursuit, we observed that presolve yields benefits in relaxation tightness but there

is no incremental benefit in relaxation tightness after implementing (iii) and (iv).
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Figure 3 Comparison of relative optimality gap between root-node lower bound and optimal objective for rank-1

basis pursuit problems with pn log10(n) entries, (i) after implementing presolve, (ii) after also including

valid linear inequalities for basis pursuit, (iii) after also including valid Shor inequalities. Each cell is

the average (geometric mean) over 20 random instances.

5.3. Branch-and-bound Design Decisions

In this section, we benchmark the efficacy of different algorithmic design options for our branch-

and-bound algorithm, including whether to use disjunctive cuts (as developed in Section 2) or a

generic disjunctive scheme based on McCormick inequalities (as described in Section 2.5); the node

expansion strategy (breadth-first, best-first, or depth-first); and whether alternating minimization,

as described in Section 4.4, should be run at child nodes in the branch-and-bound tree.

Tables 1 and 2 report the final optimality gaps and total computational time of our branch-and-

bound scheme with different configurations as we vary n. We impose two termination criteria for

these experiments: a relative optimality gap 10−4 and a time limit of one hour. Eigenvector disjunc-

tions achieve optimality gaps about an order of magnitude smaller on average than McCormick
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disjunctions. Running alternating minimization at child nodes also improves the average optimality

gap by around an order of magnitude, which provides evidence that the Burer-Monteiro alternating

minimization method is not optimal in practice when run from the root node, and can be improved

via branch-and-bound. Moreover, the best-first node selection strategy, which comprises selecting

the unexpanded node with the smallest lower bound at each iteration, outperforms both breadth-

first and depth-first search. This phenomenon is consistent across p and γ; see Tables EC.3–EC.8.

Accordingly, we use best-first search with eigenvector disjunctions and alternating minimization

run at child nodes throughout the rest of the paper, unless explicitly indicated otherwise.

We remark that in preliminary numerical experiments, we also considered solving matrix com-

pletion problems via the multi-tree branch-and-cut approach proposed in our prior work Bertsimas

et al. (2022), and directly with Gurobi’s non-convex QCQP solver. Unfortunately, neither approach

was competitive with either the McCormick disjunction or the eigenvector disjunction approach,

likely because Gurobi does not allow semidefinite constraints to be imposed, and the root node

relaxation without semidefinite constraints is often quite weak. Indeed, for instances where n= 50

and r > 1, neither of these approaches produced a lower bound better than the matrix perspective

relaxation, which is attained at the root node of the present approach.

With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 2.37× 10−2 3.06× 10−2 5.02× 10−2 5.28× 10−3 1.10× 10−2 2.60× 10−2

10 ✓ 3.29× 10−4 4.90× 10−4 7.92× 10−3 2.93× 10−4 4.91× 10−4 5.22× 10−3

20 ✗ 4.78× 10−3 4.78× 10−3 4.78× 10−3 2.61× 10−4 4.03× 10−4 4.03× 10−3

20 ✓ 5.51× 10−4 8.01× 10−4 8.01× 10−4 1.32× 10−4 1.92× 10−4 6.37× 10−4

30 ✗ 1.77× 10−2 1.77× 10−2 1.77× 10−2 2.00× 10−3 4.16× 10−3 1.35× 10−2

30 ✓ 2.01× 10−3 3.13× 10−3 3.13× 10−3 2.82× 10−4 4.53× 10−4 1.98× 10−3

40 ✗ 1.32× 10−3 1.32× 10−3 1.32× 10−3 3.28× 10−4 7.12× 10−4 6.11× 10−4

40 ✓ 1.12× 10−4 1.12× 10−4 1.12× 10−4 1.57× 10−5 1.94× 10−5 8.25× 10−5

50 ✗ 6.18× 10−4 6.18× 10−4 6.18× 10−4 8.11× 10−5 3.99× 10−4 8.11× 10−4

50 ✓ 6.37× 10−5 6.37× 10−5 6.40× 10−5 9.99× 10−6 1.13× 10−5 7.57× 10−5

Table 1 Final optimality gap across rank-one matrix completion problems with |I|= pn log10(n) filled entries,

averaged over 20 instances per row (p= 2.0, γ = 20.0).

We also investigate the effect of the number of pieces in our disjunction, q, on the computational

time needed to achieve a 10−4 optimality gap for rank-one matrix completion problems, in Figure

4. While we do not observe a significant difference between using q = 2 or q = 3 pieces, we find

that implementing a disjunctive scheme with q= 4 pieces allows our branch-and-bound strategy to

converge orders of magnitude faster, across all values of p and γ. We suspect this occurs because

four-piece disjunctions include zero as a breakpoint, which break some symmetry issues. However,
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With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 6.43× 102 6.76× 102 6.94× 102 3.10× 102 4.13× 102 8.60× 102

10 ✓ 1.40× 102 1.36× 102 5.70× 102 6.37× 101 1.04× 102 3.98× 102

20 ✗ 6.93× 102 6.92× 102 6.87× 102 2.07× 102 3.46× 102 6.18× 102

20 ✓ 2.06× 102 2.28× 102 2.37× 102 5.88× 101 9.17× 101 2.63× 102

30 ✗ 3.49× 103 3.49× 103 3.46× 103 1.99× 103 2.24× 103 3.38× 103

30 ✓ 9.21× 102 9.04× 102 9.28× 102 3.07× 102 3.35× 102 8.86× 102

40 ✗ 7.62× 102 7.62× 102 7.66× 102 1.83× 102 2.10× 102 7.25× 102

40 ✓ 5.14× 102 5.08× 102 5.19× 102 8.19× 101 9.53× 101 4.99× 102

50 ✗ 6.51× 102 6.47× 102 6.45× 102 3.18× 102 4.56× 102 6.31× 102

50 ✓ 3.22× 102 3.26× 102 3.26× 102 1.08× 102 1.47× 102 4.35× 102

Table 2 Total computational time across rank-one matrix completion problems with |I|= pn log10(n) filled

entries, averaged over 20 instances per row (p= 2.0, γ = 20.0).

we also observe that this relative advantage vanishes as n increases, an observation which we

confirm on larger instances in Figure EC.4.

5.4. Scalability Experiments

Table 2 reveals that the strongest performing implementation of our branch-and-bound algorithm

solves rank-one matrix completion problems where n= 50 to optimality in minutes. Accordingly,

we now investigate the scalability of our branch-and-bound algorithm, and its ability to obtain

higher-quality low-rank matrices than popular heuristics. We apply our algorithm to rank-k matrix

completion problems with pkn log10(n) filled entries, k ∈ {1,2,3,4,5}, and a time limit of one hour.

Figure 5a depicts the relative gap between the root node relaxation and the best incumbent solution

at the root node, and after applying branch-and-bound for one hour, as we vary n.

We observe that the gaps at the root node are generally smaller for higher ranks, suggesting

that a reasonable approach for large-scale instances could be to select the best solution found after

running branch-and-bound with a time limit of minutes or hours. Furthermore, we observe that our

branch-and-bound algorithm is highly effective in closing the bounds gap for k= 1 (when it is most

needed) but less effective for higher ranks; for example, for k = 1 and n= 10, branch-and-bound

reduces the bound gap from 49% at the root node to 1% after one hour of computational time.

Figure 5b contrasts the solution found via alternating minimization at the root node against

the best solution found by our branch-and-bound scheme after one hour of computational time,

as measured by the percentage improvement in mean-squared error on all entries (Figure EC.7c

shows the absolute improvement in mean-squared error). We observe that branch-and-bound signif-

icantly improves the average relative MSE compared to alternating minimization, with an average

relative improvement of more than 50% when k = 2 and n ≤ 50, although branch-and-bound’s
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(a) p= 2.0 (less entries), γ = 20.0 (more regularization) (b) p= 2.0 (less entries), γ = 80.0 (less regularization)

(c) p= 3.0 (more entries), γ = 20.0 (more regularization) (d) p= 3.0 (more entries), γ = 80.0 (less regularization)

Figure 4 Comparison of time taken to optimality (relative gap 10−4) for rank-one matrix completion problems

with pn log10(n) filled entries, over different numbers of pieces q ∈ {2,3,4} in upper-approximation.

edge decreases as n increases. This could occur because each semidefinite nodal relaxation is more

expensive to solve when n increases, or because there are fewer locally optimal solutions and the

landscape of optimal solutions becomes “smoother” as n increases.

Section EC.3.3 augments our comparison of branch-and-bound with the method of Burer and

Monteiro (2003), by generating the same plots in different sparsity settings, and comparing our

branch-and-bound scheme with a matrix factorization approach using stochastic gradient descent

(MFSGD) (Jin et al. 2016). We observe an even more significant MSE improvement over MFSGD

than over the method of Burer and Monteiro (2003), which can be explained by the fact that

MFSGD is designed for scalability rather than accuracy.

5.5. Summary of Findings from Numerical Experiments

The main findings from our numerical experiments are as follows:

• Section 5.2 demonstrates that our valid inequalities for rank-one matrix completion problems

significantly strengthen the semidefinite relaxation (9), and indeed routinely improve the root node
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k
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n
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(a) Relative gap at root node and after branching (b) MSE improvement (%)

Figure 5 Comparison of relative optimality gap at root node (a, left) and after running branch-and-bound for

one hour (a, right), and percentage MSE improvement (b) for rank-k matrix completion problems with

2kn log10(n) filled entries, varying n and k, with γ = 80.0, averaged over 50 random instances per point.

gap by an order of magnitude or more. However, their efficiency wanes at larger ranks and future

work could investigate stronger relaxations for the rank k > 1 cases.

• Section 5.3 investigates the impact of design choices in our branch-and-bound scheme, and

demonstrates that eigenvalue-based disjunctions obtain optimality gaps over an order of magnitude

smaller than McCormick-based ones in the same amount of computational time.

• Section 5.4 demonstrates that our branch-and-bound scheme solves matrix completion prob-

lems where n= 150 in minutes or hours, although scalability depends on the rank of the matrix, the

amount of data observed and the degree of regularization. We also observe that, at the information-

theoretic threshold identified by Candès and Recht (2009) with O(nk logn) entries observed, our

branch-and-bound scheme obtains low-rank matrices with an out-of-sample predictive power 1%–

50% better than solutions obtained via a Burer-Monteiro heuristic, depending on the rank and the

dimensionality of the problem. This can be explained because Burer-Monteiro obtains a locally

optimal solution which sometimes but not always is globally optimal.

6. Conclusion

In this paper, we propose a new branch-and-bound scheme for solving low-rank matrix completion

and basis pursuit problems to certifiable optimality. The framework considers matrix perspective

relaxations and recursively partitions their feasible regions using eigenvector disjunctions. Exist-

ing approaches are either scalable heuristics (but without optimality guarantees), or rely on weak

McCormick relaxations and thus cannot scale to n> 50. On the other hand, our approach success-

fully scales to solve matrix completion problems over 150× 150 matrices to certifiable optimality.
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Future work could take three future directions: (1) using eigenvector disjunctions in conjunc-

tion with our presolving techniques to improve solution times for other non-convex quadratically

constrained problems, such as ACOPF (Kocuk et al. 2016, 2018), (2) integrating eigenvector dis-

junctions within existing global solvers, either by default or as a viable and potentially more scal-

able alternative to McCormick branching, (3) developing stronger convex relaxations for problems

where the rank exceeds one. Indeed, our numerical results reveal that our new convex relaxation

can improve upon the matrix perspective relaxation by over an order of magnitude (in terms of

the relative bound gap) in the rank-one case, but performs identically in the rank-two case.
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Balas E, Ceria S, Cornuéjols G, Natraj N (1996) Gomory cuts revisited. Operations Research Letters 19(1):1–

9.

Bandeira AS, Dobriban E, Mixon DG, Sawin WF (2013) Certifying the restricted isometry property is hard.

IEEE transactions on information theory 59(6):3448–3450.

Bao X, Sahinidis NV, Tawarmalani M (2009) Multiterm polyhedral relaxations for nonconvex, quadratically

constrained quadratic programs. Optimization Methods & Software 24(4-5):485–504.

Beck A (2007) Quadratic matrix programming. SIAM Journal on Optimization 17(4):1224–1238.

Bell RM, Koren Y (2007) Lessons from the Netflix prize challenge. Technical report, AT&T Bell Laboratories.

Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear opti-

mization. Acta Numerica 22:1–131.
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EC.1. Omitted Proofs

EC.1.1. Proof of Proposition 2

Proof of Proposition 2 It suffices to show that every feasible solution to Problem (10) can be

mapped to a feasible solution to (17) with the same objective value. Therefore, let (Y ,U) be a

feasible solution to Problem (10), let D = { (i(j), j) : j ∈ [k] } denote the set of indices that have

been disjuncted on, and select the branch of the disjunction such that U satisfies the constraints

Ui(j),j ∈ [U i(j),j,U i(j),j] and Ui,j ∈ [−1,1] for all other indices. Then, we need only construct a V

which satisfies the constraints in (17) to establish the result. To construct such a V , let us observe

that for any Vi,j1,j2 , we have constraints on Vi,j1,j2 defined by one of the following four cases:

• If j := j1 = j2 and i ̸= i(j) then it is not too hard to see that the McCormick constraints reduce

to Vi,j,j ∈ [−1,1].

• If j := j1 = j2 and i= i(j) then Vi,j,j is a subset of [0,1] which contains U 2
i,j.

• If j1 ̸= j2 and i(j1), i(j2) ̸= i then the McCormick inequalities reduce to Vi,j1,j2 ∈ [−1,1].

• If j1 ̸= j2 and i(j1) = i or i(j2) = i then Vi,j1,j2 is a subset of [−1,1] containing Ui,j1Ui,j2 .

Recall that n ≥ k + 2. Therefore, we can feasibly set Vi(j),j,j = U 2
i(j),j and Vi,j,j =

1−Vi(j),j,j

n−1
for

any i ̸= i(j). Then, it follows by construction that
∑n

i=1 Vi,j,j = 1. Moreover, set Vi(j1),j1,j2 =

Ui(j1),j1Ui(j1),j2 and Vi(j2),j1,j2 = Ui(j2),j1Ui(j2),j2 . Then, since it follows from the 2 × 2 minors of

I⪰Y ⪰UU⊤ that |U⊤
i Uj| ≤ 1, we can set Vi,j1,j2 =

−1
n−k

(∑k

j1=1 Vi(j2),j1,j2 +
∑k

j2=1 Vi(j1),j1,j2

)
, and

it follows by construction that
∑n

i=1 Vi,j1,j2 = 0. Therefore, (Y ,U ,V ) is feasible within at least one

branch of our disjunction, and there is no single McCormick disjunction which can improve our

root node relaxation. □

EC.1.2. Proof of Theorem 1

Proof of Theorem 1 Suppose that at the Lth iterate this procedure has not converged. Then,

since (YL,UL) satisfies the disjunction (16) for any xl such that l < L, we have that

k∑
t=1

⟨x⊤
l U

t
l ,x

⊤
l U

t
L⟩+ |(U t

l −U t
L)

⊤xl| ≥ ⟨xlx
⊤
l ,YL⟩.

But (Yl,Ul) was not ϵ-feasible, and thus we have that

⟨xlx
⊤
l ,Yl⟩−

k∑
t=1

⟨x⊤
l U

t
l ,x

⊤
l U

t
l ⟩> ϵ.

Adding these inequalities then reveals that

⟨xlx
⊤
l ,Yl−YL⟩+

k∑
t=1

⟨x⊤
l U

t
l ,x

⊤
l (U

t
L−U t

l )⟩+
k∑

t=1

|x⊤
l (U

t
l −U t

L)|> ϵ.
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Next, since |x⊤
l U

t
l | ≤ 1 by construction, using this identity and taking absolute values allows us to

conclude that

|⟨xlx
⊤
l ,Yl−YL⟩|+2

k∑
t=1

|x⊤
l (U

t
l −U t

L)|> ϵ.

Moreover, by applying the Cauchy-Schwarz inequality to both terms in this inequality we obtain

⟨xlx
⊤
l ,Yl−YL⟩ ≤ ∥YL−Yl∥F and

∑k

t=1 |x⊤
l (U

t
l −U t

L)| ≤
∑k

t=1 ∥U t
l −U t

L∥2 = ∥Ul−UL∥2,1. Further,

by norm equivalence we have ∥Ul−UL∥2,1 ≤
√
n∥Ul−UL∥F . Combining these results allows us to

conclude that

∥Yl−YL∥F +2
√
n∥Ul−UL∥F > ϵ.

That is, with respect to the decision variables (Y ,U), our procedure never visits any ball of

radius ϵ
2
√
n
twice. Moreover, the set of feasible (Y ,U) is bounded via I⪯ Y ⪯UU⊤, tr(Y )≤

√
k.

Therefore, we have that ∥Y ∥F ≤
√
k and ∥U∥F ≤

√
k, and thus there are finitely many non-

overlapping balls of radius ϵ
2
√
n
which contain a point in the feasible region. Therefore, for any

ϵ > 0, our procedure converges within L(ϵ) iterations for some L∈N. □
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EC.2. Presolving in Basis Pursuit: Theoretical Observations and Practical
Implementation

In this section, we characterize the sparsity patterns of matrices that can arise after presolving in

basis pursuit. Recalling that I ⊂ [n]× [m] is the set of indices of observed entries, we define the

following index set of presolved entries Ik corresponding to rank-k presolve:

Definition EC.1. The index set of presolved entries in rank-k presolve, Ik, is constructed from

I by the following procedure:

1. Initialize Ik←I.

2. Find sets R⊂ [n], C ⊂ [m], with |R|= |C|= k+1, such that |Ik ∩ (R×C)|= (k+1)2− 1. If

no such sets exist, terminate.

3. Update Ik←Ik ∪ (R×C) and return to step 2.

For convenience, we define the following sets:

∀ i∈ [n], Ik(i, :) :=
{
j
∣∣ (i, j)∈ Ik } (EC.1)

∀ j ∈ [m], Ik(:, j) :=
{
i
∣∣ (i, j)∈ Ik } (EC.2)

∀ R⊂ [n], Ik(R, :) :=
{
j
∣∣ (i, j)∈ Ik ∀ i∈R

}
=
⋂
i∈R

Ik(i, :) (EC.3)

∀ C ⊂ [m], Ik(:,C) :=
{
j
∣∣ (i, j)∈ Ik ∀ j ∈C

}
=
⋂
j∈C

Ik(:, j) (EC.4)

In the rank-1 case, we have the following result:

Lemma EC.1. I1 satisfies the following properties:

• For any i1, i2 ∈ [n], either I1(i1, :) = I1(i2, :) or |Ik({i1, i2}, :)|= 0.

• For any j1, j2 ∈ [m], either I1(:, j1) = I1(:, j2) or |Ik(:,{j1, j2})|= 0.

This implies that I1 can be expressed as:

I1 = (R1×C1)∪ (R2×C2)∪ . . . , (EC.5)

where {Ri} are nonempty and form a partition of [n], and Cj are nonempty and form a partition

of [m]. Intuitively, there exists a permutation of the rows and columns of the matrix such that I1

has a “block-rectangular” structure.

In the general rank-k case, we have the following extension:

Lemma EC.2. Ik satisfies the following properties:

• For R1,R2 ⊂ [n] with |R1|= |R2|= k, either Ik(R1, :) = Ik(R2, :) or |Ik(R1 ∩R2, :)|<k.

• For C1,C2 ⊂ [m] with |C1|= |C2|= k, either Ik(:,C1) = Ik(:,C2) or |Ik(:,C1 ∩C2)|<k.
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Proof of Lemma EC.2 We prove the first property (the second is symmetrical). Suppose R1 ̸=

R2 (which implies |R1 ∪R2| ≥ k+1). (If R1 =R2 then I1(R1, :) = I1(R2, :) and we are done.) Also

suppose that I1(R1 ∩R2, :)≥ k. Then there exists k column indices C = {j1, j2, . . . , jk} such that

C ⊂I1(R1 ∩R2, :), i.e. (R1 ∪R2)×C ⊂Ik.

Suppose for the sake of contradiction that there exists j ∈ I1(R1, :) \ I1(R2, :) (the case where

|I1(R2, :) \ I1(R1, :)| > 0 is identical). Select i ∈ R2 \R1. Then, the k indices in {i} × C and the

k(k + 1) indices in R1 × (C ∪ {j}) all belong in I, and therefore (R1 ∪ {i})× (C ∪ {j}) defines a

(k + 1)-by-(k + 1) minor with (k + 1)2 − 1 observed entries. This means that (i, j) could still be

added as a presolved entry to Ik, which contradicts the definition of Ik. □

In a practical implementation of the presolve stage for rank-k basis pursuit stage, we perform

the procedure described in Definition EC.1. Instead of enumerating all
(

n
k+1

)
×
(

m
k+1

)
possibilities

for R and C in step 2, which is prohibitively expensive, we use Lemma EC.2 to reduce the number

of row-sets and column-sets to search over. The observation is that if R×C has (k+1)2−1 entries

in Ik, then there must exist C ′ ⊂C (R′ ⊂R) with |C ′|= k (|R′|= k) respectively such that R′×C

and R×C ′ are in Ik. In particular, Ik(:,C ′)≥ (k+ 1), and we use this in line 5 of Algorithm 2.

Also, |R′|= k implies that the set R := {r ∈ Ik(:,C ′) : (r, j)∈ Ik} must satisfy |R| ≥ k; we use this

in line 8 of Algorithm 2 to accelerate the algorithm. These accelerations perform better in a sparser

regime, because many row-sets and column-sets can be skipped over.
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Algorithm 2 Presolve for rank-k basis pursuit problems

1: Initialize Ik = I;

2: while not converged do

3: converged ← true;

4: for each C ′ ⊂ [m] with |C ′|= k do

5: if |Ik(:,C ′)| ≤ k, continue;

6: for j ∈ [m] \C ′ do

7: Define C :=C ′ ∪{j};

8: Define R := {r ∈ Ik(:,C ′) : (r, j)∈ Ik} (if |R|<k, continue);

9: Choose R′ ⊂R such that |R′|= k;

10: for i∈ Ik(:,C ′) \R do

11: Define R :=R′ ∪{i};

12: Update Ik←Ik ∪ (R×C) and set converged ← false;

13: Presolve (i, j) based on other entries in R×C;

14: end for

15: end for

16: end for

17: end while

18: return Ik
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EC.3. Numerical results

EC.3.1. Root Node: Strengthened Relaxations and Presolving

Figure EC.1 and Table EC.1 illustrate the trade-off between optimality gap at the root node (the

upper bound is obtained via alternating minimization) and computational time, for solving the

strengthened relaxation in rank-1 matrix completion. We observe that, across all sizes, regulariza-

tion parameters, and sparsity settings, imposing more Shor LMIs yields tighter but (potentially

significantly) more computationally expensive semidefinite relaxations. Moreover, we observe that

imposing constraints on all minors in M4 and M3 (as compared to just those in M4) leads to a

larger reduction in optimality gap when γ = 80.0 (1–3 orders of magnitude) than when γ = 20.0

(0–2 orders of magnitude). So, the benefits from our strengthened relaxation appear to be more

salient in regimes with less regularization.

(a) small instances, γ = 20.0: more regularized (b) small instances, γ = 80.0: less regularized

(c) larger instances, γ = 20.0: more regularized (d) larger instances, γ = 80.0: less regularized

Figure EC.1 Comparison of relative bound gap at the root node against time for the root node relaxations of

rank-1 matrix completion problems, varying the number and kind of Shor LMIs added. Each point

is the average (geometric mean) of 20 random problem instances with the specified parameters.
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Time taken (s) Root node gap

n p γ None Shor(4) Shor(4, 3) None Shor(4) Shor(4, 3)

10 2.0 20.0 0.0163 0.0386 0.132 1.78× 10−2 1.75× 10−2 6.81× 10−4

80.0 0.0182 0.0359 0.164 1.14× 10−1 1.05× 10−1 6.09× 10−3

3.0 20.0 0.0189 0.0596 0.484 5.93× 10−3 1.54× 10−3 3.04× 10−5

80.0 0.0224 0.062 0.523 1.88× 10−1 8.62× 10−2 1.87× 10−4

20 2.0 20.0 0.104 0.379 2.11 2.02× 10−3 1.35× 10−3 1.68× 10−5

80.0 0.109 0.368 2.33 5.17× 10−2 4.31× 10−2 4.69× 10−4

3.0 20.0 0.0976 0.68 11.2 3.01× 10−3 1.04× 10−3 2.06× 10−6

80.0 0.109 0.615 11.6 8.67× 10−2 4.33× 10−2 1.02× 10−5

30 2.0 20.0 0.408 2.05 12.0 3.76× 10−3 2.88× 10−3 6.15× 10−5

80.0 0.435 1.69 13.2 7.10× 10−2 6.18× 10−2 3.06× 10−3

3.0 20.0 0.426 2.9 76.6 4.77× 10−4 1.33× 10−4 3.42× 10−6

80.0 0.475 3.54 72.9 6.08× 10−2 3.29× 10−2 1.32× 10−5

Table EC.1 Comparing time taken and relative gap at the root node across rank-one matrix completion

problems with pkn log10(n) filled entries, with different Shor LMIs added (averaged over 20 instances per row)

Notably, while including different types of minors (M4 and M3 instead of just M4) provides

a way to control the trade-off between computation time and relaxation strength, this can also

be done by including a subset of minors in M4 ∪M3. This is most clearly seen in Figure EC.2,

where either half or all of the minors in M4 ∪M3 are imposed. The merits of either approach

differ based on sparsity (number of filled entries) and problem size. Unfortunately, we do not

observe a strengthened relaxation in the rank-2 case despite imposing constraints on more minors,

as demonstrated in Figure EC.3 and EC.2.

Figure EC.2 Comparison of relative bound gap at the root node against time for the root node relaxations of

rank-1 matrix completion problems, varying the proportion of Shor LMIs added (γ = 80.0).
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(a) small instances, γ = 20.0: more regularized (b) small instances, γ = 80.0: less regularized

Figure EC.3 Comparison of relative bound gap at the root node against time for the root node relaxations of

rank-2 matrix completion problems, varying the number and kind of Shor LMIs added. Each point

is the average (geometric mean) of 20 random problem instances with the specified parameters.

Time taken (s) Root node gap

n p γ None M4 M4 ∪M3 None M4 M4 ∪M3

10 2.0 20.0 0.0200 0.228 1.77 0.081 0.081 0.081
80.0 0.0212 0.228 1.81 0.216 0.216 0.216

3.0 20.0 0.0240 1.04 6.32 0.0581 0.0581 0.0506
80.0 0.0240 1.05 6.43 0.165 0.165 0.165

20 2.0 20.0 0.139 2.01 18.7 0.0601 0.0601 0.0601
80.0 0.145 1.94 18.7 0.183 0.183 0.183

3.0 20.0 0.164 6.65 72.9 0.0369 0.0369 0.0369
80.0 0.171 6.54 76.7 0.133 0.133 0.133

30 2.0 20.0 0.640 7.91 77.2 0.0394 0.0394 0.0394
80.0 0.675 7.55 77.6 0.138 0.138 0.138

3.0 20.0 0.752 17.6 353 0.0195 0.0195 0.0195
80.0 0.784 17.7 381 0.0772 0.0772 0.0772

Table EC.2 Comparing time taken and relative gap at the root node across rank-two matrix completion

problems with pkn log10(n) filled entries, with different Shor LMIs added (averaged over 20 instances per row)

EC.3.2. Branch-and-bound Design Decisions

In this section, we document the performance of our branch-and-bound scheme with various param-

eter settings: comparing our eigenvalue disjunctions to a naive McCormick-based approach, chang-

ing the order of the nodes explored, and including alternating minimization at child nodes of the

search tree. We evaluate all combinations of parameter settings, and record their relative optimality

gap and time taken (capped at 1 hour) for rank-1 matrix completion problems with regularization
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With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 2.56× 10−1 3.21× 10−1 3.75× 10−1 3.19× 10−1 3.93× 10−1 4.73× 10−1

10 ✓ 1.44× 10−2 2.71× 10−2 1.12× 10−1 1.48× 10−2 2.63× 10−2 9.37× 10−2

20 ✗ 1.09× 10−1 1.09× 10−1 1.09× 10−1 1.12× 10−1 1.34× 10−1 1.39× 10−1

20 ✓ 5.88× 10−2 6.05× 10−2 6.06× 10−2 3.53× 10−2 4.64× 10−2 1.10× 10−1

30 ✗ 1.31× 10−1 1.31× 10−1 1.31× 10−1 1.34× 10−1 1.45× 10−1 1.48× 10−1

30 ✓ 6.94× 10−2 7.08× 10−2 7.08× 10−2 3.60× 10−2 4.27× 10−2 6.76× 10−2

40 ✗ 7.76× 10−2 7.76× 10−2 7.76× 10−2 6.77× 10−2 7.38× 10−2 7.93× 10−2

40 ✓ 4.27× 10−2 4.27× 10−2 4.27× 10−2 2.27× 10−2 2.58× 10−2 4.16× 10−2

50 ✗ 3.71× 10−2 3.71× 10−2 3.71× 10−2 4.85× 10−2 5.15× 10−2 5.41× 10−2

50 ✓ 2.55× 10−2 2.55× 10−2 2.55× 10−2 1.66× 10−2 1.83× 10−2 2.98× 10−2

Table EC.3 Comparing relative gap (of the branch-and-bound scheme, capped at 1 hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 2.0, γ = 80.0).

With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 1.86× 103 2.08× 103 2.12× 103 2.40× 103 2.74× 103 2.88× 103

10 ✓ 1.40× 103 1.55× 103 2.18× 103 1.68× 103 2.10× 103 2.73× 103

20 ✗ 3.25× 103 3.27× 103 3.21× 103 3.22× 103 3.24× 103 3.21× 103

20 ✓ 2.89× 103 2.78× 103 3.16× 103 2.64× 103 2.49× 103 3.07× 103

30 ✗ 3.49× 103 3.48× 103 3.46× 103 3.40× 103 3.42× 103 3.39× 103

30 ✓ 3.38× 103 3.26× 103 3.45× 103 2.97× 103 2.89× 103 3.28× 103

40 ✗ 3.54× 103 3.54× 103 3.53× 103 3.49× 103 3.50× 103 3.46× 103

40 ✓ 3.48× 103 3.41× 103 3.53× 103 3.22× 103 3.18× 103 3.42× 103

50 ✗ 3.56× 103 3.56× 103 3.56× 103 3.54× 103 3.54× 103 3.52× 103

50 ✓ 3.50× 103 3.46× 103 3.55× 103 3.36× 103 3.34× 103 3.48× 103

Table EC.4 Comparing time taken (s) (of the branch-and-bound scheme, capped at one hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 2.0, γ = 80.0).

γ ∈ {20.0,80.0} and pn log10(n) filled entries with p∈ {2.0,3.0}. The results are shown in Tables 1–2,

EC.3–EC.4 (less entries p= 2.0 and less regularization γ = 80.0), EC.5–EC.6 (more entries p= 3.0

and more regularization γ = 20.0), and EC.7–EC.8 (more entries p = 3.0 and less regularization

γ = 80.0) respectively.

The tables show that eigenvector disjunctions perform consistently better than McCormick dis-

junctions, and that best-first search on unexplored child nodes is usually a good node selection

strategy. They also illustrate the power of performing alternating minimization at (some) child

nodes, because better feasible solutions can be found with different initializations, which yield tight

upper bounds and thereby accelerating the branch-and-bound procedure.
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With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 7.61× 10−3 8.77× 10−3 1.64× 10−2 9.09× 10−4 1.21× 10−3 1.42× 10−2

10 ✓ 6.27× 10−4 7.68× 10−4 6.26× 10−3 1.28× 10−4 2.08× 10−4 3.69× 10−3

20 ✗ 6.96× 10−3 6.96× 10−3 6.96× 10−3 6.23× 10−5 3.12× 10−4 8.24× 10−4

20 ✓ 6.22× 10−4 1.67× 10−3 1.67× 10−3 8.14× 10−5 1.40× 10−4 7.20× 10−4

30 ✗ 3.31× 10−3 3.31× 10−3 3.31× 10−3 9.04× 10−5 3.05× 10−4 1.04× 10−3

30 ✓ 1.05× 10−4 2.37× 10−4 2.37× 10−4 1.60× 10−5 2.25× 10−5 6.00× 10−5

40 ✗ 1.78× 10−4 1.78× 10−4 1.78× 10−4 2.16× 10−5 3.41× 10−5 1.39× 10−4

40 ✓ 5.86× 10−5 5.86× 10−5 5.86× 10−5 4.97× 10−6 5.30× 10−6 3.20× 10−5

50 ✗ 6.46× 10−5 6.46× 10−5 6.46× 10−5 3.86× 10−7 1.47× 10−6 2.58× 10−6

50 ✓ 2.24× 10−6 2.24× 10−6 2.24× 10−6 1.02× 10−6 1.04× 10−6 4.09× 10−7

Table EC.5 Comparing relative gap (of the branch-and-bound scheme, capped at one hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 3.0, γ = 20.0).

With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 2.48× 102 2.76× 102 3.77× 102 1.27× 102 1.75× 102 4.71× 102

10 ✓ 1.26× 102 1.46× 102 3.90× 102 5.65× 101 1.10× 102 3.87× 102

20 ✗ 1.19× 103 1.19× 103 1.17× 103 1.53× 102 2.55× 102 4.41× 102

20 ✓ 4.35× 102 6.66× 102 6.85× 102 1.30× 102 2.01× 102 4.15× 102

30 ✗ 9.20× 102 9.26× 102 9.17× 102 6.42× 101 8.55× 101 5.89× 102

30 ✓ 3.48× 102 3.74× 102 3.75× 102 3.31× 101 5.51× 101 1.60× 102

40 ✗ 1.08× 102 1.08× 102 1.08× 102 5.45× 101 7.93× 101 1.07× 102

40 ✓ 1.10× 102 1.07× 102 1.08× 102 3.19× 101 4.79× 101 1.08× 102

50 ✗ 1.73× 102 1.72× 102 1.71× 102 1.56× 101 1.90× 101 5.12× 101

50 ✓ 6.23× 101 6.20× 101 6.21× 101 1.33× 101 1.50× 101 3.68× 101

Table EC.6 Comparing time taken (s) (of the branch-and-bound scheme, capped at one hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 3.0, γ = 20.0).

In Figure EC.4, we observe the effect of the number of pieces used q in our disjunctive scheme

on the final relative gap after branch-and-bound for 1 hour on rank-1 matrix completion problems

with n≥ 50. As the problem size n increases, keeping the number of observed entries at 2n log10(n),

the relative advantage of 4-piece disjunctions vanishes – this is likely due to the fact that, as n

increases, the time taken for a single semidefinite relaxation increases and using 4-piece disjunctions

introduces more child nodes, leading to an overall increase in computational time. Hence, we only

recommend using 4-piece disjunctions for rank-1 matrix completion problems of low to moderate

size.
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With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 1.44× 10−1 1.85× 10−1 3.45× 10−1 1.32× 10−1 1.96× 10−1 2.61× 10−1

10 ✓ 2.97× 10−2 5.86× 10−2 1.88× 10−1 3.16× 10−2 5.52× 10−2 1.61× 10−1

20 ✗ 1.29× 10−1 1.29× 10−1 1.29× 10−1 7.04× 10−2 9.22× 10−2 1.27× 10−1

20 ✓ 6.74× 10−2 9.05× 10−2 9.05× 10−2 2.69× 10−2 3.94× 10−2 8.27× 10−2

30 ✗ 1.03× 10−1 1.03× 10−1 1.03× 10−1 7.07× 10−2 8.38× 10−2 9.37× 10−2

30 ✓ 5.74× 10−2 6.08× 10−2 6.08× 10−2 2.39× 10−2 3.10× 10−2 5.28× 10−2

40 ✗ 5.15× 10−2 5.15× 10−2 5.15× 10−2 3.44× 10−2 4.02× 10−2 5.15× 10−2

40 ✓ 4.44× 10−2 4.44× 10−2 4.44× 10−2 2.16× 10−2 2.62× 10−2 4.02× 10−2

50 ✗ 2.62× 10−2 2.62× 10−2 2.62× 10−2 1.75× 10−2 2.04× 10−2 2.62× 10−2

50 ✓ 1.98× 10−2 1.98× 10−2 1.98× 10−2 7.78× 10−3 9.71× 10−3 1.44× 10−2

Table EC.7 Comparing relative gap (of the branch-and-bound scheme, capped at one hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 3.0, γ = 80.0).

With McCormick disjunctions With eigenvector disjunctions

n
Alternating

Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
minimization

10 ✗ 1.89× 103 2.16× 103 2.17× 103 2.83× 103 2.82× 103 2.88× 103

10 ✓ 1.72× 103 1.93× 103 2.14× 103 2.26× 103 2.16× 103 2.71× 103

20 ✗ 3.30× 103 3.31× 103 3.24× 103 3.26× 103 3.27× 103 3.23× 103

20 ✓ 3.06× 103 2.95× 103 3.19× 103 2.77× 103 2.71× 103 3.11× 103

30 ✗ 3.49× 103 3.48× 103 3.47× 103 3.42× 103 3.42× 103 3.40× 103

30 ✓ 3.41× 103 3.32× 103 3.46× 103 3.08× 103 3.03× 103 3.34× 103

40 ✗ 3.54× 103 3.54× 103 3.54× 103 3.50× 103 3.50× 103 3.49× 103

40 ✓ 3.49× 103 3.44× 103 3.53× 103 3.27× 103 3.27× 103 3.46× 103

50 ✗ 3.57× 103 3.56× 103 3.56× 103 3.54× 103 3.54× 103 3.54× 103

50 ✓ 3.52× 103 3.49× 103 3.56× 103 3.41× 103 3.40× 103 3.51× 103

Table EC.8 Comparing time taken (s) (of the branch-and-bound scheme, capped at one hour) across rank-one

matrix completion problems with pn log10(n) filled entries, averaged over 20 instances per row (p= 3.0, γ = 80.0).
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Figure EC.4 Comparison of relative gap (at root node, and after branching with 2-piece and 4-piece disjunctions)

for rank-one matrix completion problems with 2n log10(n) filled entries, after 1 hour (averaged over

20 instances per point).



ec14 e-companion to Bertsimas et al.: Optimal Low-Rank Matrix Completion

EC.3.3. Scalability Experiments

Here we delve into a more detailed investigation of the scalability of our approach for matrix

completion problems to large problem sizes and larger ranks. Figure EC.5 shows the relative opti-

mality gap, at the root node and after branching, of 2-piece and 4-piece disjunctions applied to

matrix completion problems of moderate to large sizes, with either pkn or pkn log10(n) filled entries

(p∈ {2.0,2.5,3.0}). From Figure EC.5 we see that as n increases, the root node relative gap reduces,

but the improvement in relative gap after branching also diminishes. We can also compare 2-piece

and 4-piece disjunctions: 4-piece disjunctions perform better for smaller-sized problems, whereas

2-piece disjunctions yield a better relative gap after branching for larger-sized problems (this is the

same trend illustrated in Figure EC.4). In the regime with pkn log10(n) filled entries, the constant

p has a smaller impact on relative optimality gaps compared to that for pkn filled entries.

Tables EC.9–EC.12 also demonstrate this but also show that as n increases, each individual SDP

takes a longer time and so a smaller number of nodes are explored. This supports the hypothesis that

as n increases, in an appropriate sparsity regime, the root node relaxation is tight and alternating

minimization recovers the globally optimal solution. Indeed, in Tables EC.11–EC.12 we can solve

200× 200 and 250× 250 matrix completion problems by performing alternating minimization (in

negligible time) to get a good solution, and certifying its optimality in an hour by solving the root

node relaxation. Figure EC.6 illustrates the same trends but visualizes the variance over individual

random instances by showing the empirical CDFs.

n p Nodes explored
Relaxation

Total time (s)
Relative gap

Relative gap
solve time (s) (root node)

50 2.0 1035.35 3.227 >3600.0 4.96× 10−1 9.12× 10−2

50 2.5 1038.75 3.219 >3600.0 7.00× 10−2 2.11× 10−2

50 3.0 1053.75 3.174 >3600.0 3.21× 10−2 1.56× 10−2

75 2.0 191.55 18.3 >3600.0 2.63× 10−1 1.59× 10−1

75 2.5 199.3 17.54 >3600.0 3.11× 10−2 1.98× 10−2

75 3.0 197.15 17.77 >3600.0 1.91× 10−2 1.26× 10−2

100 2.0 59.5 59.95 >3600.0 1.93× 10−1 1.31× 10−1

100 2.5 59.85 59.72 >3600.0 3.29× 10−2 2.48× 10−2

100 3.0 59.35 60.36 >3600.0 1.03× 10−2 7.95× 10−3

125 2.0 23.85 152.6 >3600.0 1.48× 10−1 1.26× 10−1

125 2.5 24.4 148.7 >3600.0 2.00× 10−2 1.82× 10−2

125 3.0 24.2 150.2 >3600.0 7.39× 10−3 5.77× 10−3

150 2.0 11.0 340.2 >3600.0 1.14× 10−1 1.01× 10−1

150 2.5 11.35 334.3 >3600.0 1.55× 10−2 1.35× 10−2

150 3.0 11.1 337.5 >3600.0 4.39× 10−3 2.75× 10−3

Table EC.9 Results for rank-one matrix completion with 2-piece disjunctions starting with pkn filled entries

over different problem instances (average of 20 instances per row).
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(a) pkn filled entries, 2-piece disjunctions (b) pkn log10(n) filled entries, 2-piece disjunctions

(c) pkn filled entries, 4-piece disjunctions (d) pkn log10(n) filled entries, 4-piece disjunctions

Figure EC.5 Comparison of relative gap at the root node (dashed lines), and after branch-and-bound with a

3600s time limit (solid lines), against n for rank-one matrix completion problems (γ = 80.0) using

two-piece or four-piece disjunctions (averaged over 20 random instances).

Figure EC.7c shows the absolute improvement in mean-squared error (MSE) after branching

for 1 hour, as compared to the alternating minimization solution found at the root node, across

different sparsity settings (|I| ∝ n, |I| ∝ n log10(n), and |I| ∝ n6/5 log10(n)). These plots illustrate

the MSE improvement (in absolute terms) which is more pronounced in the sparser regime, and

for low values of rank k other than k= 1.

In a similar vein, Figure EC.8 also shows the absolute improvement in MSE when comparing

our approach to MFSGD (described in Jin et al. (2016), and found to be the best-performing

benchmark of four methods studied in Bertsimas and Li (2020)). Across all parameter settings,

our method yields a significant MSE improvement, with the improvement particularly stark in the

sparser regime (|I| ∝ n). For more populous regimes, our approach yields a smaller improvement

with larger ranks – this could be due to the time limit of 1 hour resulting in our methods not

exploring many nodes and not improving over the alternating minimization solution found at the

root node. Overall, these plots show the benefits of our optimality-focused approach.
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(a) p= 2.0, 2-piece disjunctions (b) p= 2.0, 4-piece disjunctions

(c) p= 2.5, 2-piece disjunctions (d) p= 2.5, 4-piece disjunctions

(e) p= 3.0, 2-piece disjunctions (f) p= 3.0, 4-piece disjunctions

Figure EC.6 Empirical CDF of relative gaps after branch-and-bound for 1 hour, for rank-one matrix completion

problems (with γ = 80.0) (across 20 random instances).
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n p Nodes explored
Relaxation

Total time (s)
Relative gap

Relative gap
solve time (s) (root node)

50 2.0 654.6 5.235 >3600.0 4.78× 10−1 1.27× 10−1

50 2.5 580.32 5.588 3204.8 6.06× 10−2 1.16× 10−2

50 3.0 453.95 5.871 2183.8 2.89× 10−2 4.57× 10−3

75 2.0 137.25 25.89 >3600.0 2.63× 10−1 2.14× 10−1

75 2.5 133.1 26.71 >3600.0 3.11× 10−2 2.34× 10−2

75 3.0 123.79 29.09 >3600.0 1.86× 10−2 9.52× 10−3

100 2.0 47.0 76.66 >3600.0 1.89× 10−1 1.68× 10−1

100 2.5 44.6 80.94 >3600.0 3.29× 10−2 2.52× 10−2

100 3.0 34.05 84.9 2482.4 1.03× 10−2 5.59× 10−3

125 2.0 18.55 203.5 >3600.0 1.48× 10−1 1.26× 10−1

125 2.5 18.6 196.9 >3600.0 2.00× 10−2 1.81× 10−2

125 3.0 16.0 205.8 3082.3 7.39× 10−3 5.88× 10−3

150 2.0 8.3 456.7 >3600.0 1.17× 10−1 1.02× 10−1

150 2.5 8.1 479.2 >3600.0 1.55× 10−2 1.53× 10−2

150 3.0 7.95 460.5 >3600.0 4.39× 10−3 3.26× 10−3

Table EC.10 Results for rank-one matrix completion with 4-piece disjunctions starting with pkn filled entries

over different problem instances (average of 20 instances per row).

n p Nodes explored
Relaxation

Total time (s)
Relative gap

Relative gap
solve time (s) (root node)

50 2.0 1051.2 3.175 >3600.0 3.72× 10−2 1.63× 10−2

50 2.5 1032.65 3.262 >3600.0 2.13× 10−2 1.15× 10−2

50 3.0 1018.8 3.332 >3600.0 1.98× 10−2 7.46× 10−3

75 2.0 191.3 18.35 >3600.0 1.31× 10−2 9.24× 10−3

75 2.5 191.2 18.38 >3600.0 1.10× 10−2 5.41× 10−3

75 3.0 187.9 18.79 >3600.0 8.23× 10−3 4.21× 10−3

100 2.0 60.65 59.09 >3600.0 6.24× 10−3 3.21× 10−3

100 2.5 58.4 61.4 >3600.0 6.56× 10−3 2.36× 10−3

100 3.0 58.1 61.8 >3600.0 5.91× 10−3 1.52× 10−3

125 2.0 21.7 154.1 2935.0 3.14× 10−3 1.49× 10−3

125 2.5 21.7 151.7 2669.8 1.03× 10−3 6.62× 10−4

125 3.0 20.1 155.3 2284.7 5.13× 10−4 3.00× 10−4

150 2.0 10.95 335.2 >3600.0 1.73× 10−3 6.62× 10−4

150 2.5 10.8 337.8 >3600.0 1.01× 10−3 5.82× 10−4

150 3.0 10.3 339.3 3404.0 1.79× 10−3 4.18× 10−4

200 2.0 1.45 1200.0 1563.0 6.06× 10−7 9.65× 10−8

200 2.5 1.4 1190.0 1496.6 5.04× 10−7 1.96× 10−7

200 3.0 1.4 1139.0 1462.1 4.69× 10−7 5.25× 10−8

250 2.0 1.2 3118.0 3581.6 5.54× 10−7 9.22× 10−8

250 2.5 1.19 3169.0 >3600.0 7.42× 10−7 2.14× 10−7

250 3.0 1.25 3175.0 >3600.0 5.96× 10−7 1.44× 10−7

Table EC.11 Results for rank-one matrix completion with 2-piece disjunctions starting with pkn log(n) filled

entries over different problem instances (average of 20 instances per row).
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n p Nodes explored
Relaxation

Total time (s)
Relative gap

Relative gap
solve time (s) (root node)

50 2.0 439.42 5.499 1733.1 3.12× 10−2 3.95× 10−3

50 2.5 374.59 5.999 1483.6 2.10× 10−2 1.79× 10−3

50 3.0 248.4 5.233 429.4 1.98× 10−2 1.08× 10−3

75 2.0 86.95 28.58 1674.1 1.31× 10−2 4.40× 10−3

75 2.5 86.44 29.59 1862.2 1.07× 10−2 1.67× 10−3

75 3.0 74.3 28.1 1263.0 8.23× 10−3 1.30× 10−3

100 2.0 33.05 85.73 2350.6 6.24× 10−3 2.15× 10−3

100 2.5 30.7 88.56 2098.9 6.56× 10−3 3.28× 10−3

100 3.0 28.39 88.09 1858.3 5.44× 10−3 1.29× 10−3

125 2.0 13.84 212.4 2475.3 3.38× 10−3 1.72× 10−3

125 2.5 11.21 204.0 1725.8 1.08× 10−3 7.61× 10−4

125 3.0 10.65 205.1 1528.5 5.13× 10−4 3.33× 10−4

150 2.0 6.9 467.6 3135.6 1.73× 10−3 1.03× 10−3

150 2.5 7.15 456.1 3174.3 1.01× 10−3 8.86× 10−4

150 3.0 6.84 463.7 3092.4 1.73× 10−3 1.05× 10−3

200 2.0 1.4 1180.0 1506.3 6.06× 10−7 6.07× 10−8

200 2.5 1.5 1159.0 1506.9 5.04× 10−7 1.08× 10−7

200 3.0 1.55 1137.0 1533.1 4.69× 10−7 8.96× 10−8

250 2.0 1.27 3157.0 >3600.0 1.53× 10−6 7.21× 10−7

250 2.5 1.12 3112.0 3376.6 4.65× 10−7 1.24× 10−7

250 3.0 1.23 3077.0 >3600.0 8.79× 10−7 9.32× 10−8

Table EC.12 Results for rank-one matrix completion with 4-piece disjunctions starting with pkn log(n) filled

entries over different problem instances (average of 20 instances per row).
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(a) 2kn filled entries (b) 3kn filled entries

(c) 2kn log10(n) filled entries (d) 3kn log10(n) filled entries

(e)
(
2/106/5

)
kn6/5 log10(n) filled entries (f)

(
3/106/5

)
kn6/5 log10(n) filled entries

Figure EC.7 MSE improvement (in absolute terms) for rank-k matrix completion problems against MFSGD,

varying n and k, with γ = 80.0, averaged over 50 random instances per point.
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(a) 2kn filled entries (b) 3kn filled entries

(c) 2kn log10(n) filled entries (d) 3kn log10(n) filled entries

(e)
(
2/106/5

)
kn6/5 log10(n) filled entries (f)

(
3/106/5

)
kn6/5 log10(n) filled entries

Figure EC.8 MSE improvement (in absolute terms) for rank-k matrix completion problems against alternating

minimization at the root node, varying n and k, with γ = 80.0, averaged over 50 random instances

per point.
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